摘要:后坐位移是火炮设计中的一个重要参数,它关系到火炮射击过程中的稳定性、精度以及整体性能。为了准确测量火炮的后坐位移,本文介绍了一种采用激光测振仪进行测量的新方法。该方法基于多普勒效应和激光外差干涉原理,通过测量火炮后坐过程中产生的多普勒频移来计算位移量。实验结果表明,该方法具有较高的实用性和准确性,为火炮的设计和优化提供了有力的支持。
关键词:火炮;后坐位移;激光测振仪;多普勒效应;激光外差干涉
一、引言
火炮后座运动是一个复杂的物理过程,与炮身、弹丸、炮架等构件的综合响应密切相关。后坐位移作为火炮射击过程中的重要参数之一,对于评估火炮的性能和可靠性具有重要意义。通过测量后坐位移,可以了解火炮在射击过程中后坐机构的工作特性,如后坐机构复进是否平稳、各构件之间撞击引起的速度变化是否合理等。这些信息对于火炮的可靠性设计、性能优化以及仿真模型的完善都具有重要的指导意义。
目前,火炮后坐位移的测量方法主要包括激光CCD法、高速摄影法和激光测振法等。其中,激光CCD法通过激光束照射在后坐表面形成漫发射,再通过敏感元件的光斑距离反算得到后坐位移。然而,该方法对于测量环境的要求较高,且容易受到外界因素的干扰。高速摄影法则是通过快速拍摄射击过程中的后坐机构运动状态,再通过图像处理获得其位移和速度等参数。但这种方法只适用于单发射击,对于高速连发射击时的测量误差较大。相比之下,激光测振法具有非接触式测量、空间分辨率高、响应频带宽等优势,更适合于火炮后坐位移的测量。
二、激光测振仪测量原理及系统组成
(一)测量原理
激光测振仪是基于多普勒效应和激光外差干涉原理来测量物体速度和位移量的。当激光束照射到运动的物体表面时,由于物体表面的反射作用,激光束会发生多普勒频移。这一频移的大小与物体的运动速度成正比,与激光的频率、波长以及光与物体之间的夹角等因素有关。通过测量多普勒频移的大小,可以计算出物体的运动速度。进一步地,通过对速度的积分处理,可以得到物体的位移量。
激光测振法的测量原理图如图1所示。激光器发出频率为f的信号光束,经过分光棱镜照射到被测物体表面。被测物体产生振动后,反射回来的光束会产生多普勒频移Δf。这一频移信号与参考光束在光电探测器中发生干涉,产生包含多普勒频移的干涉信号。该信号经过后端的数据采集和处理系统后,可以得到物体的运动速度和位移量。
图1 激光测振法测量原理图
(二)系统组成
激光测振仪测量系统主要由激光器、控制器、数据采集仪和计算机等组成。具体介绍如下:
激光器:激光器是测量系统的核心部件之一,它负责发出激光束并照射到被测物体表面。本文采用的激光器,其测量波长为1550nm,指示波长为635nm,光斑大小为22um。该激光器具有稳定性高、体积小巧、便于携带等优点。
控制器:控制器用于调节激光器的光学参数并接收光电探测器输出的信号。控制器具有速度位移双输出功能,可以将信号由频率变化转化为电量变化。同时,它还含有模拟滤波器,可以设置高通滤波和低通滤波以实现信号的去噪处理。
数据采集仪:数据采集仪负责捕获控制器输出的电压信号并进行处理。本文采用德维创公司的DEWE-30-8采集仪,其内部具有电压信号调理模块和电路隔离模块,可以测量(0.01~50)V的电压范围,满足LV-FS01控制器输出电压(0~10)V的测量要求。同时,它还可以设定滤波器以进一步对信号进行降噪处理。
计算机:计算机是整个测量系统的控制和处理中心。它负责接收数据采集仪传输的电压信号,并通过多功能数据采集卡将其转换为数字信号进行存储和分析。同时,计算机还可以对测量数据进行处理和分析,得到火炮的后坐位移和速度等参数。
此外,为了保证测量的准确性,测量系统还需要配备三脚架、反光纸等辅助设备。三脚架用于固定激光器并确保其稳定性;反光纸则粘贴在被测物体表面的一半区域以增加反射光的强度。
三、实验方法与数据分析
(一)实验方法
为了验证激光测振仪在火炮后坐位移测量中的可行性和准确性,本文进行了相关实验。实验对象为某型火炮,在水平射击条件下进行后坐位移的测量。实验步骤如下:
将激光器固定在三脚架上,并通过可调节云台控制激光光斑上下左右移动,确保激光光束垂直入射到被测物体表面。
将反光纸粘贴在火炮后坐表面的一半区域以增加反射光的强度。
连接激光器、控制器、数据采集仪和计算机等设备,确保系统正常工作。
进行射击实验,并记录火炮的后坐位移数据。
对测量数据进行处理和分析,得到火炮的后坐位移和速度等参数。
(二)数据分析
采用上述实验方法,对某型火炮在水平射击条件下的后坐位移进行了测量。同一射击状态进行了三次实验,得到的测量结果如图2所示。
图2 火炮后坐位移变化曲线
从图中可以看出,三次实验得到的后坐位移曲线形态一致,具有较好的重复性。射击开始时,火炮产生较大的后坐位移量,随后随着弹丸能量的消退,后坐机构开始复位。由于后坐机构在复位过程中存在一定的惯性作用,因此会产生一定的过冲现象。之后,后坐机构再次向前运动至某个位置后停止运动并回到初始位置零点。
对三次实验得到的后坐位移数据进行统计和分析,可以得到以下结论:
三次实验得到的最大后坐位移量分别为-29.9mm、-30.23mm和-29.47mm,相差较小且在一定范围内波动。这表明激光测振仪在火炮后坐位移测量中具有较高的准确性和稳定性。
后坐机构在复位过程中存在一定的过冲现象和往复运动。这是由于后坐机构在射击过程中受到较大的冲击力作用而产生一定的弹性变形和惯性作用所致。因此,在火炮的设计和优化过程中需要充分考虑后坐机构的刚度和阻尼等参数以提高其稳定性和可靠性。
通过对比三次实验得到的后坐位移曲线可以看出其具有较好的重复性。这表明激光测振仪在火炮后坐位移测量中具有较高的可靠性和稳定性,可以为火炮的设计和优化提供有力的支持。
此外,还对三次实验得到的后坐位移数据进行了微分处理,得到了火炮后坐速度的变化曲线如图3所示。
图3 火炮后坐速度变化曲线
从图中可以看出,在射击开始时火炮的后坐速度迅速增大至最大值,随后逐渐减小至零并反向增大至某个值后再逐渐减小至零。这是由于火炮在射击过程中受到较大的冲击力作用而产生较大的后坐速度,随后随着弹丸能量的消退和后坐机构的复位作用而逐渐减小至零并反向运动。通过对比三次实验得到的后坐速度曲线可以看出其也具有较好的重复性。
四、结论与展望
本文通过实验验证了激光测振仪在火炮后坐位移测量中的可行性和准确性。实验结果表明该方法具有较高的实用性和准确性,可以为火炮的设计和优化提供有力的支持。与传统测量方法相比,激光测振法具有非接触式测量、空间分辨率高、响应频带宽等优势更适合于火炮后坐位移的测量。
然而,在实际应用中还需要注意以下几个方面的问题:一是测量系统的稳定性和精度需要进一步提高以满足更高精度测量的需求;二是需要充分考虑测量环境对测量结果的影响并采取有效的措施进行补偿和修正;三是需要对测量数据进行更深入的分析和处理以提取更多有用的信息为火炮的设计和优化提供更有力的支持。
展望未来,随着激光技术和数据处理技术的不断发展,激光测振仪在火炮后坐位移测量中的应用将会更加广泛和深入。同时,也可以将其应用于其他武器装备的微小位移测试中展现出更广阔的应用前景。因此,有必要继续加强相关技术的研发和应用推广工作以推动其在军事领域的广泛应用和发展。
参考文献:
《激光测振仪在火炮后坐位移测试中的应用》 周 琦 陈前昆 李盼菲( 中国船舶集团有限公司第七一三研究所)