服务热线: 0510-88155119
13301510675@163.com
Language
项目案例 Case
Case 激光测振

激光测振仪在自动火炮后坐位移测试中的应用

日期: 2024-12-17
浏览次数: 1

摘要:后坐位移是火炮设计中的一个重要参数,它关系到火炮射击过程中的稳定性、精度以及整体性能。为了准确测量火炮的后坐位移,本文介绍了一种采用激光测振仪进行测量的新方法。该方法基于多普勒效应和激光外差干涉原理,通过测量火炮后坐过程中产生的多普勒频移来计算位移量。实验结果表明,该方法具有较高的实用性和准确性,为火炮的设计和优化提供了有力的支持。

关键词:火炮;后坐位移;激光测振仪;多普勒效应;激光外差干涉

一、引言

火炮后座运动是一个复杂的物理过程,与炮身、弹丸、炮架等构件的综合响应密切相关。后坐位移作为火炮射击过程中的重要参数之一,对于评估火炮的性能和可靠性具有重要意义。通过测量后坐位移,可以了解火炮在射击过程中后坐机构的工作特性,如后坐机构复进是否平稳、各构件之间撞击引起的速度变化是否合理等。这些信息对于火炮的可靠性设计、性能优化以及仿真模型的完善都具有重要的指导意义。

目前,火炮后坐位移的测量方法主要包括激光CCD法、高速摄影法和激光测振法等。其中,激光CCD法通过激光束照射在后坐表面形成漫发射,再通过敏感元件的光斑距离反算得到后坐位移。然而,该方法对于测量环境的要求较高,且容易受到外界因素的干扰。高速摄影法则是通过快速拍摄射击过程中的后坐机构运动状态,再通过图像处理获得其位移和速度等参数。但这种方法只适用于单发射击,对于高速连发射击时的测量误差较大。相比之下,激光测振法具有非接触式测量、空间分辨率高、响应频带宽等优势,更适合于火炮后坐位移的测量。

二、激光测振仪测量原理及系统组成

(一)测量原理

激光测振仪是基于多普勒效应和激光外差干涉原理来测量物体速度和位移量的。当激光束照射到运动的物体表面时,由于物体表面的反射作用,激光束会发生多普勒频移。这一频移的大小与物体的运动速度成正比,与激光的频率、波长以及光与物体之间的夹角等因素有关。通过测量多普勒频移的大小,可以计算出物体的运动速度。进一步地,通过对速度的积分处理,可以得到物体的位移量。

激光测振仪在自动火炮后坐位移测试中的应用

激光测振法的测量原理图如图1所示。激光器发出频率为f的信号光束,经过分光棱镜照射到被测物体表面。被测物体产生振动后,反射回来的光束会产生多普勒频移Δf。这一频移信号与参考光束在光电探测器中发生干涉,产生包含多普勒频移的干涉信号。该信号经过后端的数据采集和处理系统后,可以得到物体的运动速度和位移量。

激光测振仪在自动火炮后坐位移测试中的应用

                                                                图1 激光测振法测量原理图

(二)系统组成

激光测振仪测量系统主要由激光器、控制器、数据采集仪和计算机等组成。具体介绍如下:

  1. 激光器:激光器是测量系统的核心部件之一,它负责发出激光束并照射到被测物体表面。本文采用的激光器,其测量波长为1550nm,指示波长为635nm,光斑大小为22um。该激光器具有稳定性高、体积小巧、便于携带等优点。

  2. 控制器:控制器用于调节激光器的光学参数并接收光电探测器输出的信号。控制器具有速度位移双输出功能,可以将信号由频率变化转化为电量变化。同时,它还含有模拟滤波器,可以设置高通滤波和低通滤波以实现信号的去噪处理。

  3. 数据采集仪:数据采集仪负责捕获控制器输出的电压信号并进行处理。本文采用德维创公司的DEWE-30-8采集仪,其内部具有电压信号调理模块和电路隔离模块,可以测量(0.01~50)V的电压范围,满足LV-FS01控制器输出电压(0~10)V的测量要求。同时,它还可以设定滤波器以进一步对信号进行降噪处理。

  4. 计算机:计算机是整个测量系统的控制和处理中心。它负责接收数据采集仪传输的电压信号,并通过多功能数据采集卡将其转换为数字信号进行存储和分析。同时,计算机还可以对测量数据进行处理和分析,得到火炮的后坐位移和速度等参数。

此外,为了保证测量的准确性,测量系统还需要配备三脚架、反光纸等辅助设备。三脚架用于固定激光器并确保其稳定性;反光纸则粘贴在被测物体表面的一半区域以增加反射光的强度。

三、实验方法与数据分析

(一)实验方法

为了验证激光测振仪在火炮后坐位移测量中的可行性和准确性,本文进行了相关实验。实验对象为某型火炮,在水平射击条件下进行后坐位移的测量。实验步骤如下:

  1. 将激光器固定在三脚架上,并通过可调节云台控制激光光斑上下左右移动,确保激光光束垂直入射到被测物体表面。

  2. 将反光纸粘贴在火炮后坐表面的一半区域以增加反射光的强度。

  3. 连接激光器、控制器、数据采集仪和计算机等设备,确保系统正常工作。

  4. 进行射击实验,并记录火炮的后坐位移数据。

  5. 对测量数据进行处理和分析,得到火炮的后坐位移和速度等参数。


 

激光测振仪在自动火炮后坐位移测试中的应用

(二)数据分析

采用上述实验方法,对某型火炮在水平射击条件下的后坐位移进行了测量。同一射击状态进行了三次实验,得到的测量结果如图2所示。

激光测振仪在自动火炮后坐位移测试中的应用

                                                                                               图2 火炮后坐位移变化曲线

从图中可以看出,三次实验得到的后坐位移曲线形态一致,具有较好的重复性。射击开始时,火炮产生较大的后坐位移量,随后随着弹丸能量的消退,后坐机构开始复位。由于后坐机构在复位过程中存在一定的惯性作用,因此会产生一定的过冲现象。之后,后坐机构再次向前运动至某个位置后停止运动并回到初始位置零点。


激光测振仪在自动火炮后坐位移测试中的应用

对三次实验得到的后坐位移数据进行统计和分析,可以得到以下结论:

  1. 三次实验得到的最大后坐位移量分别为-29.9mm、-30.23mm和-29.47mm,相差较小且在一定范围内波动。这表明激光测振仪在火炮后坐位移测量中具有较高的准确性和稳定性。

  2. 后坐机构在复位过程中存在一定的过冲现象和往复运动。这是由于后坐机构在射击过程中受到较大的冲击力作用而产生一定的弹性变形和惯性作用所致。因此,在火炮的设计和优化过程中需要充分考虑后坐机构的刚度和阻尼等参数以提高其稳定性和可靠性。

  3. 通过对比三次实验得到的后坐位移曲线可以看出其具有较好的重复性。这表明激光测振仪在火炮后坐位移测量中具有较高的可靠性和稳定性,可以为火炮的设计和优化提供有力的支持。

此外,还对三次实验得到的后坐位移数据进行了微分处理,得到了火炮后坐速度的变化曲线如图3所示。

激光测振仪在自动火炮后坐位移测试中的应用

图3 火炮后坐速度变化曲线

从图中可以看出,在射击开始时火炮的后坐速度迅速增大至最大值,随后逐渐减小至零并反向增大至某个值后再逐渐减小至零。这是由于火炮在射击过程中受到较大的冲击力作用而产生较大的后坐速度,随后随着弹丸能量的消退和后坐机构的复位作用而逐渐减小至零并反向运动。通过对比三次实验得到的后坐速度曲线可以看出其也具有较好的重复性。

四、结论与展望

本文通过实验验证了激光测振仪在火炮后坐位移测量中的可行性和准确性。实验结果表明该方法具有较高的实用性和准确性,可以为火炮的设计和优化提供有力的支持。与传统测量方法相比,激光测振法具有非接触式测量、空间分辨率高、响应频带宽等优势更适合于火炮后坐位移的测量。

然而,在实际应用中还需要注意以下几个方面的问题:一是测量系统的稳定性和精度需要进一步提高以满足更高精度测量的需求;二是需要充分考虑测量环境对测量结果的影响并采取有效的措施进行补偿和修正;三是需要对测量数据进行更深入的分析和处理以提取更多有用的信息为火炮的设计和优化提供更有力的支持。

展望未来,随着激光技术和数据处理技术的不断发展,激光测振仪在火炮后坐位移测量中的应用将会更加广泛和深入。同时,也可以将其应用于其他武器装备的微小位移测试中展现出更广阔的应用前景。因此,有必要继续加强相关技术的研发和应用推广工作以推动其在军事领域的广泛应用和发展。

参考文献:

《激光测振仪在火炮后坐位移测试中的应用》 周 琦 陈前昆 李盼菲( 中国船舶集团有限公司第七一三研究所)


Case / 相关推荐
2024 - 12 - 17
点击次数: 1
摘要:后坐位移是火炮设计中的一个重要参数,它关系到火炮射击过程中的稳定性、精度以及整体性能。为了准确测量火炮的后坐位移,本文介绍了一种采用激光测振仪进行测量的新方法。该方法基于多普勒效应和激光外差干涉原理,通过测量火炮后坐过程中产生的多普勒频移来计算位移量。实验结果表明,该方法具有较高的实用性和准确性,为火炮的设计和优化提供了有力的支持。关键词:火炮;后坐位移;激光测振仪;多普勒效应;激光外差干涉...
2024 - 12 - 11
点击次数: 1
在当今科技日新月异的时代,能量收集系统作为实现自持续运行的关键技术,正日益受到广泛关注。这些系统通过捕捉环境中的各种能量形式,如机械振动、热能等,并将其转化为电能,为微型设备提供源源不断的动力。其中,激光测振仪作为一种高精度的测量工具,在能量收集系统的研发与优化中发挥着举足轻重的作用。为何激光测振仪如此重要?能量收集系统的性能评估与优化离不开对振动特性的精确测量。激光测振仪以其非接触、高精度、实时...
2024 - 12 - 11
点击次数: 6
激光测量振动传感器作为一种先进的测试技术,正逐渐成为评估超声波换能器性能的关键工具。超声波换能器,作为能量转换的核心部件,其振动特性的精确测量对于确保设备的高效运行至关重要。通过激光测量技术,我们可以非接触、高精度地捕捉到换能器的振动数据,为产品优化和质量控制提供有力支持。超声波换能器在医疗、工业检测、材料科学等领域有着广泛的应用,其性能的稳定性和可靠性直接关系到整个系统的效能。相较于传统的测量手...
2024 - 12 - 04
点击次数: 10
摘要:本文深入探讨了3D扫描激光测振仪在金属超声疲劳试验中的高精度应用,通过详细的数据分析、算法公式以及测量步骤的阐述,展示了其在非接触式应力应变测试中的独特优势。结合德国凯泽斯劳滕大学材料科学与工程学院的实际研究案例,本文揭示了3D扫描激光测振仪在金属疲劳特性研究中的重要作用,为高性能材料的可靠性评估提供了有力的技术支持。一、引言随着现代动力系统的不断发展,对高性能材料的疲劳特性研究提出了更高的...
2024 - 11 - 27
点击次数: 3
引言在水下环境中进行振动测试,对于理解水下结构物的动态行为至关重要。例如,超声医疗换能器、海洋勘探设备以及潜艇结构等,都需要在水下进行精确的振动测试。本文将以一个简单的金属梁为测试样品,利用三维激光测振仪PSV-500-3D,详细阐述如何在水下进行振动测试,并通过数据分析揭示物体在水中的振动特性变化。实验搭建测试仪器与配置泓川科技提供了两种扫描式激光测振仪,分别适用于不同测量场合:红外式扫描头:激...
2024 - 11 - 26
点击次数: 5
引言钢筋混凝土结构作为现代建筑中最常用的结构形式之一,其安全性和稳定性至关重要。在地震、风载等外部荷载作用下,结构的振动特性会发生变化,甚至导致损坏。因此,对钢筋混凝土结构的振动特性进行准确测量和分析,对于评估结构的安全性、优化设计和维护策略具有重要意义。本研究利用德国卡尔斯鲁厄理工学院建筑材料研究院的先进设备,采用多通道激光测振仪,对钢筋混凝土梁的振动特性进行了深入研究。研究背景与目的德国卡尔斯...
About Us
关于泓川科技
专业从事激光位移传感器,激光焊缝跟踪系统研发及销售的科技公司
中国 · 无锡 · 总部地址:无锡新吴区天山路6号
销售热线:0510-88155119 
图文传真:0510-88152650
Working Time
我们的工作时间
周一至周五:8:00-18:00
周六至周日:9:00-15:00
Shown 企业秀 More
  • 1
    2023 - 03 - 09
    激光位移传感器被广泛应用于各种领域中。其中一个很有用的应用是测量薄膜厚度。这种传感器可以在离表面很近的距离下进行高精度测量,因此非常适合这种应用。本文将介绍激光位移传感器如何用于测量薄膜厚度,包括测量方法、测量原理和市场应用。一、测量方法测量薄膜厚度的基本思路是利用激光位移传感器测量薄膜前后表面的距离差,然后通过几何公式计算出薄膜厚度。在实际操作中,测量方法大致可分为以下几种:1. 手持式测量手持式测量通常用于快速的现场检测。用户只需要将激光位移传感器靠近待测表面,然后通过读取显示屏上的数值判断薄膜厚度是否符合要求。这种方法不需要复杂的设备和步骤,非常易于使用。但是由于人手的震动和误差等因素,手持式测量的精度相对较低,只适用于需求不是特别高的场合。2. 自动化在线测量自动化在线测量一般用于工业生产线上的质量控制。这种方法需要将激光位移传感器与自动化设备相连接,将测量数据传递给计算机进行分析。在这种情况下,测量过程可以完全自动化,精度也可以得到保证。但是相对于手持式测量来说,这种方法需要的设备和技术要求更高,成本也更高。3. 显微镜下测量显微镜下测量常用于对细小薄膜厚度的测量。在这种情况下,用户需要将激光位移传感器与显微镜相结合进行测量。由于显微镜的存在,可以大大增强测量精度。但是相对于其他两种方法,这种方法需要的设备更多,并且技巧要求也更高。二、测量原理激光位移传感器利用的是激光三...
  • 2
    2023 - 09 - 26
    1 激光光热技术测厚:原理是利用激光照射材料,产生的热量使材料产生变化,再通过光学方式检测这种变化以确定材料的厚度。优点是非接触式、无损伤、准确;缺点也是显而易见的,对于颜色、形状、表面纹理等都有不同程度的影响。2 白光干涉测厚:原理是使用白光干涉仪产生干涉图案,然后通过分析干涉图案得材料厚度。优点是测量精度高、灵敏度高;缺点是设备复杂且成本高昂。3 激光干涉测厚:主要是利用激光波的相干性,测量物体的干涉条纹来反推出物体的厚度。优点是测量精度高、速度快;但激光源的稳定性和调节技术要求比较高。4 光谱共聚焦测厚:该方法是根据材料对不同波长光的反射、折射和吸收特性,同时探测所有波长的光谱,从而计算出材料厚度。优点是测量准确、适用范围广;缺点是设备复杂、操作要求高。5 椭圆偏光法测厚:原理是利用光的偏振特性对材料进行测量,根据计算出材料厚度。优点是接触、无损伤,但适用范围有限。6 红外吸收法测厚:红外吸收法是指通过测定红外光在材料中吸收的程度来推断优点是测量过程简单、直观、精度高;缺点是对材料的红外吸收特性有严格要求。7 X/β射线测厚:主要是利用X射线或者β射线穿透材料时,穿透的射线强度和物体的厚度之间存在一定的关系。优点是精确、可靠;缺点是人体安全需要考虑。8 电容测厚:原理是利用两极板间的电容量与介质厚度成正比,通过测量电容量来测量厚度。优点是设备简单、便宜;缺点是精度较低。9 反...
  • 3
    2024 - 03 - 05
    在测量被透明物体覆盖的目标时,环境照明补偿和透视测量是提高测量准确性的重要手段。这些技术的应用,在智能手机等电子设备的制造过程中,具有至关重要的作用。首先,让我们来探讨一下环境照明补偿的作用。在生产线环境中,照明条件往往并不稳定,这会对测量精度产生严重影响。环境照明补偿技术通过自动调整传感器参数,以补偿外部光照条件的变化,使得测量系统能在不同的照明条件下都能保持稳定的测量性能。这就使得我们在测量被透明物体(如手机屏幕)覆盖的目标时,能够得到更为准确的结果。其次,透视测量技术则能够解决透明物体对测量造成的干扰。由于透明物体会让部分光线穿过,使得传统的测量技术难以准确捕捉目标的位置和形状。而透视测量技术则能够通过特殊的光学设计和算法处理,使得传感器能够“看透”透明物体,直接对其背后的目标进行测量。这样,我们就可以在不接触目标的情况下,对其进行准确的测量。在智能手机等电子设备的制造过程中,这两种技术都有着广泛的应用。例如,在手机屏幕的生产过程中,环境照明补偿技术可以帮助我们确保屏幕在各种光线条件下都能显示清晰。而透视测量技术则可以用于测量手机屏幕下的各种元器件,如触摸屏、摄像头等,确保它们的位置和尺寸都符合设计要求。此外,这两种技术还可以结合使用,以提高测量的精度和效率。例如,我们可以先使用透视测量技术确定目标的位置,然后使用环境照明补偿技术对其进行精确测量。这样,我们不仅可以得到更准确...
  • 4
    2023 - 03 - 20
    介绍工业光电传感器是现代制造业中最常用的检测设备之一,广泛应用于自动化生产线、机械加工、装配、物流搬运等行业。随着国民经济的不断发展,中国的工业光电传感器制造业也不断发展壮大,成为制造业的一支重要力量。本文旨在对中国产的工业光电传感器现状进行描述。发展历史20世纪80年代初期,我国的工业自动化程度比较低,大部分生产线仍采用人力操作,制造业存在高人力成本、低效率、品质难以保证等问题。为了提高制造业的效率和品质,中国开始引入外国的工业自动化设备,其中就包括工业光电传感器。80年代中后期,国内开始试水制造工业光电传感器,并逐步发展壮大。90年代初期,随着国民经济的增长和工业自动化的加速推进,中国的工业光电传感器制造业进入快速发展期。如今,中国的工业光电传感器制造业已经处于全球领先地位,成为世界闻名的光电传感器生产基地之一。产业链分析商业模式中国的工业光电传感器制造业商业模式主要是以生产销售为主,较少采用研发生产销售一体化模式。生产企业主要供应给自动化设备制造商,然后这些自动化设备制造商销售给最终用户,最终用户则使用这些设备来自动化生产线。除此之外,还有一些企业将工业光电传感器产品应用到自己的设备制造中,以提高自己产品的品质和效率,然后再将自己的产品销售给最终用户。在商业模式上,中国的工业光电传感器制造业与欧美等发达国家还存在一定的差距。技术研发中国的工业光电传感器制造业在技术研发方面逐渐...
  • 5
    2023 - 09 - 30
    一、介绍在许多须要进行精确检查的工业生产领域,视觉系统的高度定位已成为一项关键技术。尤其在物料变化情况复杂或需要精确测量的应用场景中,如何通过视觉系统稳定地执行Z轴方向定位是个重要议题。而在这方面,高精度激光测距传感器无疑可以提供解决方法。二、解决方案1、测量初始化首先提供一个安全并且可控的环境以保证传感器的测量工作。将目标工件放在固定的位置上,并确保其稳固不动来为测量过程提供准确的基础。2、高精度激光测距传感器启动测量启动高精度激光测距传感器对目标进行测量。传感器会发出一束红外激光,该激光会瞄准工件并反射回传感器,创建出一个明确的测量路径。传感器具有强大的抗干扰能力,即使目标工件材质变化,也能够维持稳定的测量结果。3、数据处理与分析接下来进入数据处理阶段。传感器会捕捉反射回来的激光,然后利用内部的光学组件和测量算法进行数据分析,计算出其对应的Z轴坐标值。4、结果反馈与定位最后,我们将测量结果(即Z轴的坐标值)传递给工业相机,一旦接收到数据,相机就能在Z轴上进行精确的位置定位。在这个过程中,即使工件移动或者改变位置,我们的系统也能实时根据新的测量结果进行调整,保证视觉系统始终在正确的位置对工件进行检测。5、持续追踪与更新系统会持续监测工件的位置,并根据需要实时更新Z轴的高度信息。这样,在整个生产过程中,无论工件如何变化或移动,我们的视觉系统都能进行稳定、准确的检测。三、行业应用1....
  • 6
    2024 - 12 - 11
    激光位移传感器作为一种高精度、非接触式的测量工具,在工业自动化、科研、医疗等多个领域发挥着重要作用。其制造过程涉及多个环节和专业技术,以下将详细介绍激光位移传感器的制造全过程及所使用的零部件。一、设计与研发激光位移传感器的制造首先始于设计与研发阶段。根据市场需求和技术趋势,设计团队会确定传感器的主要性能指标,如测量范围、精度、分辨率等。接着,选择合适的激光发射器和接收器,设计光学系统和信号处理电路。这一阶段的关键在于确保传感器能够满足预期的测量要求,并具备良好的稳定性和可靠性。二、原材料采购在设计完成后,进入原材料采购阶段。激光位移传感器的主要零部件包括:激光器:产生高方向性的激光束,用于照射被测物体。激光器的选择直接影响传感器的测量精度和稳定性。光电二极管或CCD/CMOS图像传感器:作为接收器,接收被测物体反射回来的激光,并将其转换为电信号。光学透镜组:包括发射透镜和接收透镜,用于调整激光束的形状和发散角,确保精确照射和接收反射光。电路板:搭载信号处理电路,对接收到的电信号进行处理和分析。外壳:保护传感器内部组件,并提供安装接口。三、加工与制造在原材料到位后,进入加工与制造阶段。这一阶段包括:零部件加工:对金属外壳进行切割、钻孔和打磨等处理,以满足设计要求。同时,对光学透镜进行精密加工,确保其光学性能。组件组装:将激光器、光电二极管、光学透镜组等零部件组装到电路板上,形成完整的...
  • 7
    2023 - 09 - 11
    在真空环境下应用光谱共焦位移传感器的可行性一直是一个备受关注的问题。真空环境的特殊性决定了对传感器的要求与常规环境有所不同。本篇文章将围绕真空环境下光谱共焦位移传感器的应用可行性展开讨论,并进一步深入探讨传感器在不同真空环境下的要求和变化。首先,真空环境下的应用对传感器的热产生要求较高。由于真空环境的热传导性能较差,传感器不能产生过多的热量,以避免影响传感器的正常工作和对样品的测量。光谱共焦位移传感器由于采用了被动元件,不会产生热量,因此非常适合在真空环境中应用。其次,在真空环境下使用传感器时,配件的耐真空能力也是一个重要的考虑因素。传感器配件如胶水、光纤、线缆等都必须能够耐受真空环境的特殊条件,例如低压和缺氧。为此,无锡泓川科技提供了专门用于真空环境的配件,以确保传感器的正常运行和稳定性。这些配件经过特殊处理,具有耐真空的特性,可以在真空环境中长时间使用。此外,从高真空(HV)环境到超高真空(UHV)环境,传感器对环境的要求也会发生变化。在HV环境下,传感器必须具备抗气压、抗水汽和抗粒子沉积等特性。而在UHV环境中,由于气氛更为稀薄,传感器还需要具备更高的抗气压和更低的气体释放性能。因此,传感器在HV到UHV环境的过渡中,需要经过更严格的测试和优化,以保证其在不同真空级别下的稳定性和可靠性。综上所述,真空环境下应用光谱共焦位移传感器具有可行性。传感器需要满足不产生热量的要求,并配...
  • 8
    2023 - 09 - 30
    1. 引言:随着科技的迅猛发展和市场需求的不断提升,对建材板的厚度与宽度尺寸精确测量变得越来越关键。因此,选用高精度激光位移传感器来实现,既可以提高产量,又能保证质量。2. 技术原理:激光位移传用光干涉测量技术,发出红外激光束并接收反射回仪器的光阴影,通过光敏元件将其转换成电信号,经过放大处理后输出相应的标准信号来实现位移的测量。其中,红外激光束可以达到丝级别的精度,准确度极高。3. 技术方案:- 挤出流程结束后,立即利用激光位移传感器进行厚度和宽度的测量,效率高;厚度调整功能的使用,可以显著缩短安装和产品更换所需的工时。- 高精度激光位移传感器设置于生产线上,根据实际产品的厚度和宽度需要,选定合适的光束焦距和安装位置。传感器投射出激光束,反射回传感器的发射率会随着测量对象的位移变化而变动。- 传感器内部的电路系统将接收到的电信号进行处理,根据预设的参数,输出标准信号。- 通过对数据的实时监测和分析,可以找出生产中存在的问题并及时进行调整,以确保建材板的质量。4. 应用行业:因为对射的高精度激光位移传感器具有精度和效率高、可靠性强等优点,被广泛用于建材、塑料制品、金属材料、石材加工、生物医疗、微电子等范围。特别是在板材生产等领域,可以有效提高产品质量与生产效率,满足市场对精密制造的需求。结论:利用激光位移传感器在建材板的厚度和宽度测量中,可以实现精准测量,促进生产效率,同时保证产品...
Message 最新动态
激光测振技术:旋转机械检测的核心手段 2024 - 12 - 22 在旋转机械的运行过程中,振动情况直接关乎其性能与安全。激光测振动传感器凭借其独特优势,成为该领域不可或缺的检测利器。它采用非接触式测量,有效避免了对旋转机械的物理干扰,确保测量的精准性。其高精度的特性,能够捕捉到极其微小的振动变化,为故障诊断提供可靠依据。广泛的应用范围涵盖了电机、风机、轴承等各类旋转机械,在能源、化工、机械制造等众多行业都发挥着关键作用。通过实时监测振动数据,可及时发现潜在问题,预防设备故障,保障生产的连续性与稳定性,大大降低维修成本与停机风险。工作原理:激光与振动的深度互动激光测振动传感器基于激光多普勒效应工作。当激光照射到旋转机械的振动表面时,由于物体表面的振动,反射光的频率会发生多普勒频移。设激光源发射的激光频率为,物体表面振动速度为,激光波长为,则多普勒频移可由公式计算得出。通过精确测量多普勒频移,就能得到物体表面的振动速度,进而获取振动信息。与传统测量原理相比,激光多普勒测振具有显著优势。传统的接触式测量方法,如压电式传感器,需要与被测物体直接接触,这不仅会对旋转机械的运行产生一定干扰,还可能因安装问题影响测量精度,而且在高速旋转或微小振动测量时,接触式传感器的响应速度和精度受限。而激光测振传感器采用非接触式测量,避免了对旋转机械的物理干扰,可实现高精度、宽频带的测量,适用于各种复杂工况下的旋转机械振动测量。实验设置:精准测量的基石(一)微型激光多普勒测...
光谱共焦位移传感器的那些事儿 2024 - 12 - 22 **光谱共焦传感器是一种具有高精度、高效以及非接触等技术优势的新型几何量精密测量传感器。以下将对光谱共焦传感器进行详细介绍。****一、光谱共焦传感器的工作原理**光谱共焦传感器利用不同波长的光在被测物体表面反射后,通过色散物镜聚焦在不同位置,从而建立位移和波长之间的关系。光源发出的光经过色散物镜后,不同波长的光聚焦在不同的轴向位置。当被测物体处于某一特定波长的焦点位置时,该波长的光被反射回传感器,通过成像光谱仪检测到该波长的光,从而确定被测物体的位置。**二、光谱共焦传感器的组成部分**1. **光源**:通常为宽光谱光源,能够提供一定波长范围的光。例如,在一些研究中提到的宽光谱光源可以覆盖特定的波长范围,以满足不同测量需求。2. **色散物镜**:是光谱共焦传感器的关键组成部分之一。它能够将不同波长的光聚焦在不同的轴向位置,从而实现对被测物体位置的精确测量。设计色散物镜时,需要考虑多个因素,如测量范围、图像空间数值孔径、轴向响应等。例如,有研究设计的色散物镜测量范围为 2mm,图像空间数值孔径为 0.3,轴向响应 FWHM 优于 5μm,分辨率较高,并且波长与位移之间的判定系数优于 0.9,线性关系良好。3. **成像光谱仪**:用于检测反射回来的光,并确定其波长。在一些研究中,采用棱镜 - 光栅分光的方式对成像光谱仪的后端进行模拟和分析,消除了成像光谱仪中的谱线弯曲。**三、...
光谱共焦位移传感器制造技术详解 2024 - 12 - 11 摘要光谱共焦位移传感器是一种高精度、非接触式的光电位移传感器,广泛应用于光学镜片检测、半导体制造、医疗器械生产等多个领域。本文详细阐述了光谱共焦位移传感器的制造技术,包括生产技术细节、工艺流程以及需要注意的具体事项,为相关领域的研发和生产提供参考。引言随着精密仪器制造业的发展,对于工业生产测量的要求越来越高。光谱共焦位移传感器以其高精度、非接触式、实时无损检测等特性,成为解决这一问题的有效手段。本文旨在详细介绍光谱共焦位移传感器的制造技术,包括关键零部件的选择、生产工艺流程以及制造过程中需要注意的事项。一、光谱共焦位移传感器的基本原理光谱共焦位移传感器由光源、分光镜、光学色散镜头组、小孔以及光谱仪等部分组成。传感器通过色散镜头将位移信息转换成波长信息,再利用光谱仪进行光谱分解,反解得出被测位移。其中,色散镜头作为光学部分完成了波长和位移的一一映射,是传感器的核心部件。二、关键零部件的选择1. 光源选择白光LED作为光源,其光谱分布范围广泛,能够满足不同测量需求。同时,白光LED具有寿命长、稳定性好等优点,适合用于工业生产环境。2. 色散镜头色散镜头是光谱共焦位移传感器的关键部件,其性能直接影响传感器的测量精度和分辨率。在选择色散镜头时,需要考虑其轴向色散与波长之间的线性度、色散范围以及镜头材料等因素。3. 光谱仪光谱仪用于接收通过小孔的光信号,并确定其波长,从而实现位移分辨。在选择...
Copyright ©2005 - 2013 无锡泓川科技有限公司

1

犀牛云提供企业云服务
Our Link
X
3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 0510-88155119
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开