服务热线: 0510-88155119
13301510675@163.com
Language
项目案例 Case
Case 激光位移

基于光谱共焦位移传感器的非接触式回转误差测量系统

日期: 2022-03-15
浏览次数: 84

摘要:为了实现50nm左右回转误差测量,设计了一种新型非接触式测量系统,该系统采用光谱共焦位移传感器,通过反向法获得回转轴系径向回转误差、标准球圆度误差。标准球圆度误差测量值与标称值的最大差值为5nm,表明该测量系统的测量精度能够满足设计要求。


关键词:回转误差;光谱共焦位移传感器;反向法;非接触式;超精密回转轴系


0   引言

空气静压主轴在超精密机床中有着越来越广泛的应用,是超精密机床的关键功能部件之一,其回转误差对机床加工质量有着重要影响,机床的精度越高,工件圆度误差中由主轴回转误差所造成的比例越大。通过回转误差的测量,获取主轴径向回转误差形貌,有助于优化空气静压主轴的加工、研磨和装配工艺,对提高主轴回转精度具有重要意义。


回转误差测量技术,按照传感器类型,可分为接触式和非接触式。接触式传感器主要应用于精度低、转速低的回转轴系,非接触式传感器主要应用于超精密回转轴系。空气静压主轴的回转精度通常可达到50nm以下,接触式传感器的接触力会随机改变回转误差形貌,测量重复性差,应采用非接触式传感器测量。常见的非接触式测量传感器有电容位移传感器、电涡流位移传感器、激光位移传感器、CCD传感器、扫描隧道显微镜、原子力显微镜、激光干涉仪等。电容位移传感器、电涡流位移传感器需要一定面积(电容极板、电涡流片)去测量与距离呈相应关系的电容/电感值,反映了面与面的间隙,间距小于面宽的测量点将被均化;这两类传感器还需要采取严格的电磁干扰屏蔽措施,才能获得nm级分辨率。


激光位移传感器的精度较低,难以满足50nm以下回转误差测试。激光干涉仪需要增加额外的光路,光学镜组调节较难,受环境和人为影响大。基于CCD传感器的测量法需要进行图像处理,且受限于CCD分辨率,无法用于50nm以下回转误差测量。扫描隧道显微镜、原子力显微镜的分辨率小于01nm,但价格昂贵;而且这两类仪器的采样率一般在100Hz以下,只能实现低速测量,为了保护价格昂贵的扫描头,往往需要将转速限制到1r/min以下。为构建一套转速在300r/min以下、回转误差在50nm以下的主轴回转误差测量系统,采用非接触式光谱共焦位移传感器作为高度测量,非接触式圆光栅作为角度测量,通过标准球反向法,分离出回转误差。


1     测量原理

11标准球反向法测量原理

如图1所示,标准球轮廓中心O1绕回转中心参考点O旋转,参考点O相对传感器是不变的,距离为常量C,标准球轮廓为R(θ),轴系回转误差为ε(θ),传感器反向前测量值为H1(θ),反向后测量值为H2(θ),相对起始点A的回转轴变化角度为θB点旋转180°后位于C点。

基于光谱共焦位移传感器的非接触式回转误差测量系统


H1(θ)+(θ)+ε(θ)C          (1)

将标准球、传感器反向后,O点与传感器的相对距离发生改变,增量记为ΔC。回转轴不动,故角度θ不变。

H2(θ)+(θ)+ε(θ)=C+ΔC     (2)

由式(1)(2)可得,

(θ)=1/2(2C+ΔCH1(θ)H2(θ))       (3)

ε(θ)=1/2(H2(θ)H1(θ)ΔC)            (4)

标准球圆度误差记为Δ(θ),测量起始点A的轮廓尺寸为R(0)

(θ)=(θ)-R(0)                  (5)

ΔR(θ)=1/2(H1(0)+H2(0)H1(θ)H2(θ))   (6)


1.    2光谱共焦位移传感器(CCS)测量原理

如图2所示,当挡板小孔与光源相对半透镜成镜面对称关系时,白光点光源经平面镜照射到透镜上,形成汇聚点。折射率的差异,导致汇聚点沿光轴方向的距离不同。只有恰好汇聚到样品表面的单色光可原路返回,经平面镜反射,穿过挡板小孔处,到达频谱仪,由频谱仪测量出单色光对应的波长λ

基于光谱共焦位移传感器的非接触式回转误差测量系统


对于理想小孔(孔径无限小),样品表面测量点位于高度H(a)处,单色光λa(单线标示)能穿过小孔;测量点位于高度H(b)处,单色光λb(双线标示)能穿过小孔;测量点位于高度H(c)处,单色光λc(三线标示)能穿过小孔。Hλ呈一一对应关系。通过纳米光栅尺或者标准纳米台阶样件校准即可得到相应的函数关系。实际小孔的孔径有大小误差Δr,测量时从频谱仪上可以看到一定宽度Δλ的复色光λ+Δλ)


当小孔与光源相对平面镜不呈镜面对称关系时,只有成像点在样品前或后的某个位置的单色光才能通过小孔,原路返回的单色光反而不能通过小孔。能通过小孔的单色光,在样品表面无法汇聚成一点,若其宽度过大,有可能形成非理想反射,部分光线将偏离理想路径,Δλ变大,导致测量误差变大。


2     测量系统

2.    1测量系统组成

根据标准球反向法和CCS控制器特性,构建非接触式测量系统。系统由工控机、驱动、角度测量、高度测量、夹持工装调整单元组成,如图3所示。

基于光谱共焦位移传感器的非接触式回转误差测量系统


工控机单元实现Z轴、C轴运动控制、参数设置、数据采集、结果显示等功能。工控机单元配有PCI轴控制卡,可控制电动机运动。驱动单元由C轴驱动器、Z轴驱动器组成。角度测量单元由回转轴、增量式图光栅组成。回转轴C轴采用皮带驱动方式,电动机选用伺服电动机。高度测量单元由CCS控制器和CCS传感器组成。CCS控制器将圆光栅的原点信号作为CCS数据采集的启动信号,保证每次测量起始点都在圆光栅原点处。CCS控制器通过USB口或RS232接口将采集的角度、高度数据传输给工控机,由工控机上位软件进行数据处理。Z轴实现CCS传感器Z(竖向)粗调心,夹持工装的XYZ向精调心采用手动调节机构实现。主轴回转误差测量系统实物见图4

基于光谱共焦位移传感器的非接触式回转误差测量系统


2.    2同步方式实现信号采集

采用反向法最关键的难点是角度值和高度值的同步,要保证同步误差导致的相位差小于0。同步实现信号采集既可采用软件方式,也可采用硬件方式。当采用软件方式实现时,可采用绝对式圆光栅采集角度信号,由Windows操作系统的高精度定时(1ms或者1μs)中断触发角度、高度采集,由于Win-dows操作系统不是实时操作系统,在测量300r/min的回转误差时,定时中断必须小于55μs,才能保证同步误差在可接收范围内。当采用硬件方式实现时,CCS控制器直接采集圆光栅的正交信号,角度与高度之间的同步触发由CCS控制器内部采样电路实现如图5所示。与软件同步方式相比,硬件同步方式既减小了上位机操作系统同步时钟误差,又减小了CCS控制器通过USB通讯线缆传送高度数据产生的延迟误差,还克服了上位机无法按照严格的等时间隔访问CCS控制器内部采样寄存器数据的缺点,大大减小角度、高度的采样时间差,对于中低速回转误差测量具有非常重要的意义。

基于光谱共焦位移传感器的非接触式回转误差测量系统


由于CCS接收角度信号采用单端接法实现,只用到A+B+Z+信号,信号电缆应采取良好的屏蔽措施。电动机动力线缆与CCS采集信号线缆之间相隔在100mm以上,走向呈正交位置关系。


3     测量软件

3.    1测量流程

启动测量后,连续采集25圈数据(5圈作为一组数据进行处理),生成TXT数据文档,反转标准球和传感器,再连续采集25圈数据(5圈作为一组数据进行处理),生成TXT数据文档。对两组数据进行滤波,由式(4)(6)计算出回转误差ε(θ)、标准球圆度误差Δ(θ)。测量流程,如图6所示。

基于光谱共焦位移传感器的非接触式回转误差测量系统


32测量界面

测量软件后台处理测量流程,测量软件界面(7)显示采集参数设置、测量方法选择、测量数据所生成的图像、测量结果。测量参数设置区可设置电动机转速、单次采集圈数、采样频率。测量方法选择区可选择3种测量方法:单点法、反向法和三点法。图像显示区以笛卡尔坐标显示反向前、后消偏心的高度值曲线,分别以笛卡尔坐标、极坐标显示分离出的主轴回转误差曲线、标准球圆度误差曲线。结果显示区显示5组主轴回转误差值、标准球圆度误差值。

基于光谱共焦位移传感器的非接触式回转误差测量系统


4     测量结果

CCS控制器采样率1kHz,标准球圆度误差出厂值36nm。整套测量系统位于精密空气弹簧隔振台上,隔振台位于精密测量用隔振地基上,测量系统置于封闭外罩内。分别对三套轴(A、轴B、轴C)进行了测量,测量结果如表1、图810所示。

基于光谱共焦位移传感器的非接触式回转误差测量系统

基于光谱共焦位移传感器的非接触式回转误差测量系统

基于光谱共焦位移传感器的非接触式回转误差测量系统

基于光谱共焦位移传感器的非接触式回转误差测量系统

基于光谱共焦位移传感器的非接触式回转误差测量系统

基于光谱共焦位移传感器的非接触式回转误差测量系统



基于光谱共焦位移传感器的非接触式回转误差测量系统



如表1,对每组的连续5圈数据进行均值化处理后,不同轴系分离出的标准球圆度误差平均值分别为003500410037μm,与出厂标称值(36nm)最大差值为5nm。表明该测量系统具有非常高的测量精度和重复性。


5     结语

基于光谱共焦位移传感器的非接触式测量系统,是一种结构简单、测量精度非常高的测量系统。该系统通过反向法获得回转轴径向回转误差、标准球圆度误差。经滤波掉系统性误差(主要为偏心)并进行均值化处理后,不同轴系的回转误差最大差值为8nm,表明该测量系统具有非常高的精度和重复性,可用于回转轴系50nm左右径向回转误差测量。


在不同回转轴系下,分离出的标准球圆度误差平均值相对出厂值的最大差值仅为5nm。该测量系统还可用于50nm以下标准球赤道附近的小范围圆度误差测量。当标准球测量点的纬度较高时,受CCS传感器和标准球轮廓尺寸限制,为了获得最佳的反射效果,需要传感器轴线处于被测纬度的法线上,因此,若要测量标准球完整纬度的圆度误差,还需要增加CCS传感器轴线转轴。


Case / 相关推荐
2024 - 11 - 18
点击次数: 2
在现代汽车制造业中,车顶与车身纵梁的结合位置精度直接关系到车辆的密封性、安全性和整体美观。为了确保这一关键装配过程的精确性,采用先进的3D线激光位移传感器,如HL-8040型号,已成为行业内的优选方案。本文将深入探讨该传感器在测量车顶与纵梁结合位置时的技术原理、测量步骤及其高精度实现的细节。一、技术背景与传感器参数HL-8040型3D线激光位移传感器以其卓越的性能参数,为实现高精度测量提供了坚实基...
2024 - 11 - 18
点击次数: 0
在现代汽车制造过程中,车体高度测量是一项至关重要的任务。它不仅影响车辆的外观和性能,还直接关系到车辆的整体质量和安全。传统的人工测量方法不仅效率低下,而且精度难以保证,因此,采用先进的激光位移传感器进行自动测量成为了一种有效的解决方案。本文将详细阐述如何使用LTP1000系列高速激光位移计在1米距离内精确测量车体高度,并反馈至研磨机械手的仿形控制,实现高精度、高效率和稳定的测量。技术背景LTP10...
2024 - 11 - 17
点击次数: 3
在现代自动化生产线上,托盘作为物料搬运和存储的基本单元,其数量的准确统计对于生产效率、库存管理及成本控制至关重要。然而,当托盘紧密对接、快速流动于高速流水线上时,传统计数方法往往难以胜任。本文将深入探讨一种基于高速激光位移传感器的创新解决方案,该方案通过精确捕捉托盘堆叠侧面的高度变化,实现了在高速环境下的托盘精确计数,为工业生产带来了革命性的改变。一、技术背景与挑战在快节奏的生产环境中,托盘以惊人...
2024 - 10 - 21
点击次数: 16
引言 在现代精密制造、自动化检测及科学研究领域,对位移与距离的精确测量需求日益增长,尤其是当测量精度要求达到微米甚至亚微米级别时,传统的测量方法往往难以满足要求。近年来,基于调频连续波(Frequency Modulated Continuous Wave, FMCW)技术的激光位移/测距传感器因其高精度、抗干扰性强等特点,逐渐成为高精度测量领域的研究热点。本文将详细介绍一款采用FMC...
2024 - 10 - 11
点击次数: 28
摘要:在光伏硅片制造过程中,确保硅片具有均匀一致的厚度是提升产量、降低废品率及控制成本的关键。本文介绍了一种基于大光斑高精度激光位移传感器的硅片厚度测量方法,通过两台传感器对射测量,有效消除了硅片表面粗糙度对测量精度的影响,实现了硅片厚度的精确测量。一、引言光伏硅片作为太阳能电池的核心组件,其厚度的一致性直接影响到太阳能电池的性能和制造成本。传统的硅片厚度测量方法往往受到硅片表面粗糙度的影响,导致...
2024 - 10 - 11
点击次数: 18
摘要:在液晶显示面板的生产过程中,玻璃基板的平整度和重叠度是决定产品质量的关键因素。本文介绍了一种基于激光位移传感器的测量方法,该方法通过精确测量玻璃基板的厚度及重叠状态,有效提升了装载过程的精确性和效率,降低了损坏风险。一、引言液晶显示面板(LCD)作为现代电子设备的重要组成部分,其性能直接受到玻璃基板质量的影响。玻璃基板的平整度、重叠度等参数对LCD的分辨率、透光度、厚度、整体质量及视角等特性...
About Us
关于泓川科技
专业从事激光位移传感器,激光焊缝跟踪系统研发及销售的科技公司
中国 · 无锡 · 总部地址:无锡新吴区天山路6号
销售热线:0510-88155119 
图文传真:0510-88152650
Working Time
我们的工作时间
周一至周五:8:00-18:00
周六至周日:9:00-15:00
Shown 企业秀 More
  • 1
    2022 - 12 - 05
    今天我们讨论的是条码阅读器的性能冗余,高性能条码阅读器有哪些优势呢?有时在使用中条码阅读器在调试时。不能很好的对准。或者条码阅读器在使用一段时间后出现故障和校准错误。纸箱和包裹也可能出现大幅度变形或者倾斜。或者定义范围不合适。或者超出质量标准,甚至有时还会达到,没有达到标准的class a,条码标准。例如条码印刷不清晰或者褪色。在所有的这种条件情况下,我们的条码阅读器的性能冗余就派上用场了。       条码阅读器达到参数限制时。通常需要性的目的,也就是说即使阅读条件不在标准范围内,足够高的读取质量也能解决这个问题。即使在极端条件下,我们专门开发的光学和模拟电子装置也能可靠读取条码信息。我给大家演示一下,在这个简单的装置中,条码阅读器通过以太网连接到PC,可以使用web对口激活调节模式,然后通过图表显示质量,如果条码印刷质量较好,清洁角度高达±30度,也能保证实现可靠性,但您可以看到我们产品的检测范围远远超过低级的限制。我们将这个产品功能,称为性能荣誉,该功能可以实现非常高的录取质量和应用可靠性。您在应用中遇到哪些问题呢?请联系我们。
  • 2
    2024 - 01 - 21
    光谱共焦位移传感器是一种利用光谱干涉测量物体位移和形变的高精度测量设备。为了确保测量的准确性和稳定性,暗校准(DARK)操作的执行及其有效掌握是至关重要的。首先,我们需要明确什么时候需要进行暗校准。主要场景包括系统重新连接、环境温度变动10℃以上以及传感器图像出现异常跳动起伏等情况。对于这些情况,都建议重新进行暗校准操作,以修正任何可能的误差。暗校准操作的具体流程如下:1. 清洁光纤:在开始进行暗校准之前,务必要清洁光纤端,以消除灰尘和油脂的干扰。这是因为这些杂质会反射光线,增加背景光的影响。2. 插牢光纤:正确并且稳固地连接光纤,避免由于连接处的反射,导致背景光的增强。3. 遮挡**:在执行暗校准时,需要使用深色物体对**进行完全遮挡,避免环境光的干扰。如果环境没有强光源,只需将被测物体移出测量范围,就可以进行暗校准。4. 执行暗校准:完成上述流程后,便可进行暗校准操作。若暗校准效果不理想,需要重新检查并确保光纤清洁和连接正常。5. 温度变化时重新暗校准:由于环境温度的改变可能影响光源的亮度,因此当温度变化超过10℃时,应重新进行暗校准,以保证准确性。除此之外,某些厂商如立仪、基恩士及普雷茨特Mini型等采用了优化设计,通过将耦合器外置或使用棱镜耦合器以及收发光纤分离的方案,能有效降低接口污染对背景光的影响,提升传感器性能和稳定性。总的来说,暗校准是光谱共焦位移传感器获取准确稳定...
  • 3
    2023 - 12 - 08
    随着科技的不断发展和进步,传感器技术得到了广泛的应用,尤其是在音响设备的振动频率测量方面。为了解决传统多普勒激光振动测量仪在成本上的投入问题,我们引入了一种低成本且高精度的解决方案--我们的高精度高速激光位移传感器LTP080系列。LTP080系列是一款卓越的激光位移传感器,它具有最高160K赫兹的采样频率,可以轻松处理100赫兹以下的低频振动测量。这使得它非常适合在音响设备的振动频率测量中使用。首先,必须将激光位移传感器准确地定位在音响设备的振动部分。然后,启动传感器进行数据采集。传感器将会收集音响设备振动的位移数据,这些数据通过微积分运算计算得出速度信息。然后,再对速度数据进行二次微积分运算,便可获取加速度信息。这样,我们便可以通过经济的方式获得音响设备的振动速度和加速度信息,无需购买昂贵的多普勒激光振动测量仪。值得注意的是,这种测量方式并不完美。它需要通过数学运算将位移数据转换为速度和加速度信息,并且对于高频振动测量可能存在局限性。然而,正是这种方法的低成本和高精度特性,使其在音响设备振动频率测量方面发挥了非凡的作用。此外,激光位移传感器还有其他一些优点,例如强大的抗干扰能力,可以适应各种环境条件,包括高温、低温、湿热等环境,以及不受照射材料、颜色及表面粗糙度的影响等。总的来说,LTP080系列高速激光位移传感器在音响设备的振动频率测量中的应用,提供了一种经济实惠且准确的解决...
  • 4
    2022 - 12 - 05
    今天我们来讲一下电容式传感器的原理,首先什么是电容传感器呢?电容传感器主要是一种开关传感器,可以检测活动区附近的材料因为这些材料会影响电场。现在您可以通过一些简短的动画进行了解。电容式传感器的主要优势,他们完全不受材料的颜色,表面特性的影响。在某些条件下甚至可以透壁检测。并且对空气中的污染物不灵敏,例如灰尘,另外重要的一点是,他们工作是完全不受任何类型背景光的影响。那么在使用电容式传感器时应该考虑哪些方面呢?       首先要考虑的是所检测物体的湿度或者尺寸可能发生变化。还需要考虑一些典型的开关频率。当然您还需要关注激光位移传感器之间的距离。最重要的一点是激光位移传感器开关距离以及特定材料的绝缘常量。关于电容式传感器,我们还需要来了解哪些其他方面呢?它有三个主要的应用领域,首先是容量控制,这里可以看到一个简单的图片,也是包装行业的一个事例,图中的两个传感器底部和顶部各有一个。       可用于检测罐装高度的高位和低位,从而开始和停止估计流程,另外一个主要应用领域是内装物控制在这个图片里,你可以看到典型的就是检测牛奶或者一些食品的人,物体内部包装的产品的容量,检测各个包装中是否存在冲突,这里电容式传感器的用处是最后一个应用是主要应用在状态控制,图中的只是可以看到这里是通过太阳能行业的一个示例,来了解电...
  • 5
    2024 - 01 - 21
    保障桥梁的安全运行与结构稳定性是城市交通安全的重要链接,而高精度激光位移传感器正是完成此项任务的关键装备之一。在桥梁结构监测中,它们凭借其非接触式高精度测量原理,对桥梁的位移、变形、振动等关键参数进行实时监测,为桥梁健康管理提供重要依据。首先,在桥梁的挠度和变形监测中,激光位移传感器扮演着非常重要的角色。通过将传感器安装在结构的关键位置,可以实时地观察并记录桥梁的挠度、沉降和扭曲等变化情况,这些数据能够提供对桥梁健康状况的即时反馈,帮助维修人员及时发现并对异常变形现象进行处理。其次,激光位移传感器还能作为振动监测工具,为桥梁的刚度和自然频率评估提供重要依据。该传感器通过测量桥梁的振频、振型和振幅等参数,可以生成宝贵的结构振动数据。在桥梁出现异常振动现象时,它们可以实时检测并发出预警信号,为桥梁维护人员提供对策指引,确保桥梁的安全使用。最后,激光位移传感器在桥梁结构损伤检测与诊断中也展现出重要的价值。通过对激光位移传感器采集到的振动信号进行分析,可以提取出桥梁的频率响应函数和模态特征等关键信息。进一步地,这些特征可以与桥梁设计时的标准特征进行对比,以检测桥梁是否存在损伤或疲劳等问题。这也使得激光位移传感器能够在桥梁微小的结构变化初始阶段就进行预警和诊断,从而帮助维护人员采取及时的维修或加固措施,有效延长桥梁的使用寿命。总体来看,高精度激光位移传感器在桥梁结构监控中起关键作用。无论是挠...
  • 6
    2020 - 09 - 14
    现如今在很多的行业里面都离不开激光位移传感器的应用,因为这种特殊激光位移传感器特点‍是能够对长度以及方位等来进行高精度的准确测量,而且用起来简便且很耐用所以受到了无数用户们的认可。而面对市场上众多的激光位移传感器品牌用户们究竟该怎么去选择呢?一、根据需要测量的目标结构与材质进行选择激光位移传感器虽然有着强大的测量功能,但是对于测量的目标结构与材质也是有着相应的需求的,因为激光位移传感器的测量过程是需要一个完整三角光路的,如果被测量目标的表面凹入不平就会造成三角光路无法形成,这样的话自然也就无法顺利的得到测量数据了。如果被测量目标的表面吸光这样也是无法形成完整三角光路进而无法完成测量工作的,因此用户们在选择激光位移传感器产品之时应着重考虑到这些问题才行。二、根据参数指标的实际要求进行选择激光位移传感器如今在制造业内有着很多的应用特别是对电子行业更是如此,而在选择这种产品时也应当根据具体所需的参数指标的来进行针对性选择才行。事实上这里所说的参数及指包含的面比较广比如说分辨率还有测量的速率等,因为对零部件生产的要求越是精密那么对它的要求也自然要更高也只有这样才能生产制造出真正的好产品。虽然激光位移传感器功能众多在生产过程当中的重要性是很明显的,但是在选择激光位移传感器的时候还是不能盲目应当遵循着上述这两个方面的原则,只有这样才能在众多的激光位移传感器品牌当中顺利地找到更能够满足自身实际需...
  • 7
    2023 - 12 - 08
    现代科技日新月异的发展,为我们带来了种种便利。光伏产业就是其中的一员。压延玻璃作为光伏电池板的关键材料,其厚度的精确控制直接影响到电池板性能。然而,传统的手动检测方法难以满足高精度测量的需要,光谱共焦传感器的出现彻底改变了这一问题。光谱共焦传感器,顾名思义,它利用光谱学原理和共焦技术,实现对物体的高精度,迅速,无损检测。在压延玻璃的生产过程中,我们可以使用它进行厚度的实时监测。具体步骤如下:首先,我们应该注意的是,由于压延玻璃两面的表面状态不同,一面平整光滑,另外一面则是由无数微小的半球面拼接而成。因此,在进行光学测量时,我们需要遵循激光的透光原理,从平整表面那一侧打光。这样做可以确保我们获得的数据稳定而准确。其次,由于压延玻璃在生产过程中可能会出现轻微的抖动,因此,我们需要选择具有较大测量范围的光谱共焦传感器,以弥补生产过程中的这种不确定性。一般来说,压延玻璃的厚度在2-3.5mm之间,因此我们尽量选用量程大于8mm的传感器。最后,光谱共焦传感器具有良好的穿透性能和大角度检测能力。我们可以通过检测透明物体的正反两面,以此来获取压延玻璃的厚度值。同时,由于其可以进行大角度测量,所以,即使玻璃表面存在凹凸不平的情况,也能得出稳定、准确的测量结果。本案例给我们展示了科技与生产的完美结合,使得生产过程更加精细,更加高效。我们有理由相信,随着科技的不断进步,未来生产出的光伏压延玻璃将更加完...
  • 8
    2024 - 11 - 20
    在当今精密制造与检测领域,对微小尺寸变化的精确测量需求日益增长。特别是在半导体制造、微纳加工、光学元件检测等高端应用中,对测量误差的严格要求往往达到纳米级。面对这一挑战,国内自主研发的LTC100光谱共焦位移传感器以其卓越的性能脱颖而出,不仅实现了30nm以下的测量误差,还保证了光斑直径小于2μm,为高精度测量领域树立了新的国产标杆。技术亮点:超高精度测量:LTC100采用先进的光谱共焦技术,通过精确控制光源发射的多波长光束与被测物体表面反射光之间的干涉现象,实现位移的高精度测量。其核心算法通过复杂的光谱分析与相位解调技术,有效消除了环境干扰和系统误差,确保测量误差稳定控制在30nm以下。微小光斑设计:传感器内置的精密光学系统采用高数值孔径物镜,结合优化的光束整形技术,实现了小于2μm的光斑直径,使得在微小结构或特征上的测量成为可能,显著提高了测量的空间分辨率。测试数据与算法公式:LTC100的性能验证基于严格的实验室测试与现场应用反馈。以下为其关键测试数据:线性度:在0-10mm测量范围内,线性偏差小于±5nm,确保测量的稳定性和可靠性。重复性:连续测量同一位置100次,标准差小于10nm,证明其高重复性和一致性。分辨率:理论上可达0.1nm,实际测量中受环境因素影响,但依旧保持在1nm左右,远超行业平均水平。核心算法公式简述如下:d=2λ0⋅2πΔϕ其中,d为被测位移...
Message 最新动态
突破精度极限:LTC100光谱共焦位移传感器——国产高精度测量的新标杆30nm精度 2024 - 11 - 20 在当今精密制造与检测领域,对微小尺寸变化的精确测量需求日益增长。特别是在半导体制造、微纳加工、光学元件检测等高端应用中,对测量误差的严格要求往往达到纳米级。面对这一挑战,国内自主研发的LTC100光谱共焦位移传感器以其卓越的性能脱颖而出,不仅实现了30nm以下的测量误差,还保证了光斑直径小于2μm,为高精度测量领域树立了新的国产标杆。技术亮点:超高精度测量:LTC100采用先进的光谱共焦技术,通过精确控制光源发射的多波长光束与被测物体表面反射光之间的干涉现象,实现位移的高精度测量。其核心算法通过复杂的光谱分析与相位解调技术,有效消除了环境干扰和系统误差,确保测量误差稳定控制在30nm以下。微小光斑设计:传感器内置的精密光学系统采用高数值孔径物镜,结合优化的光束整形技术,实现了小于2μm的光斑直径,使得在微小结构或特征上的测量成为可能,显著提高了测量的空间分辨率。测试数据与算法公式:LTC100的性能验证基于严格的实验室测试与现场应用反馈。以下为其关键测试数据:线性度:在0-10mm测量范围内,线性偏差小于±5nm,确保测量的稳定性和可靠性。重复性:连续测量同一位置100次,标准差小于10nm,证明其高重复性和一致性。分辨率:理论上可达0.1nm,实际测量中受环境因素影响,但依旧保持在1nm左右,远超行业平均水平。核心算法公式简述如下:d=2λ0⋅2πΔϕ其中,d为被测位移...
在测量被透明物体覆盖的目标时,环境照明补偿和透视测量是如何帮助提高测量准确性的? 2024 - 03 - 05 在测量被透明物体覆盖的目标时,环境照明补偿和透视测量是提高测量准确性的重要手段。这些技术的应用,在智能手机等电子设备的制造过程中,具有至关重要的作用。首先,让我们来探讨一下环境照明补偿的作用。在生产线环境中,照明条件往往并不稳定,这会对测量精度产生严重影响。环境照明补偿技术通过自动调整传感器参数,以补偿外部光照条件的变化,使得测量系统能在不同的照明条件下都能保持稳定的测量性能。这就使得我们在测量被透明物体(如手机屏幕)覆盖的目标时,能够得到更为准确的结果。其次,透视测量技术则能够解决透明物体对测量造成的干扰。由于透明物体会让部分光线穿过,使得传统的测量技术难以准确捕捉目标的位置和形状。而透视测量技术则能够通过特殊的光学设计和算法处理,使得传感器能够“看透”透明物体,直接对其背后的目标进行测量。这样,我们就可以在不接触目标的情况下,对其进行准确的测量。在智能手机等电子设备的制造过程中,这两种技术都有着广泛的应用。例如,在手机屏幕的生产过程中,环境照明补偿技术可以帮助我们确保屏幕在各种光线条件下都能显示清晰。而透视测量技术则可以用于测量手机屏幕下的各种元器件,如触摸屏、摄像头等,确保它们的位置和尺寸都符合设计要求。此外,这两种技术还可以结合使用,以提高测量的精度和效率。例如,我们可以先使用透视测量技术确定目标的位置,然后使用环境照明补偿技术对其进行精确测量。这样,我们不仅可以得到更准确...
激光三角测量法是如何实现对透明物体测量的?折射率校正在这个过程中起到了什么作用? 2024 - 03 - 05 激光三角测量法:精确测量透明物体的科技新突破在精密测量领域,激光三角测量法已成为一种非常重要的技术手段。这种测量方法尤其适用于透明物体的测量,因为它可以有效地解决透明物体测量中的诸多难题。本文将详细介绍激光三角测量法的原理、步骤,以及折射率校正在此过程中所起到的关键作用。一、激光三角测量法的原理激光三角测量法是一种基于光学三角测量原理的非接触式测量方法。其基本原理是:半导体激光器发出的激光束照射在目标物体上,接收器透镜聚集目标物体反射的光线并聚焦到感光元件上。当目标物体与测量设备之间的距离发生改变时,通过接收器透镜的反射光的位置也会相应改变,光线聚焦在感光元件上的部分也会有所不同。通过精确测量这些变化,就可以得出目标物体的位移、形状等参数。二、激光三角测量法的步骤设定参照距离:首先,需要设定一个参照距离,即在此距离下,激光束与感光元件之间的位置关系已知且稳定。照射激光:然后,通过半导体激光器发出激光束,照射在待测的透明物体上。接收反射光:接收器透镜会聚集从透明物体反射回来的光线,并将其聚焦到感光元件上。分析数据:当透明物体移动或形状发生变化时,反射光在感光元件上的位置也会发生变化。通过精确分析这些变化,就可以得出透明物体的位移、形状等参数。三、折射率校正的作用在测量透明物体时,一个关键的问题是需要考虑光的折射现象。由于透明物体的折射率与空气不同,光线在从空气进入透明物体时会发生折射...
Copyright ©2005 - 2013 无锡泓川科技有限公司

1

犀牛云提供企业云服务
Our Link
X
3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 0510-88155119
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开