服务热线: 0510-88155119
13301510675@163.com
Language
一、测量原理与技术框架高精度激光位移传感器实现1μm以下精度的核心在于三角测量法的深度优化。如图1所示,当激光束投射到被测表面时,散射光斑经接收透镜在CMOS/CCD阵列上形成位移图像。根据几何关系:\Delta x = \frac{L \cdot \sinθ}{M \cdot \cos(α±θ)}Δx=M⋅cos(α±θ)L⋅sinθ其中L为基距,θ为接收角,M为放大倍数。要实现亚微米分辨率需突破传统三角法的三个技术瓶颈:光斑质量退化、环境噪声干扰、信号处理延迟。二、关键算法突破1. 光斑中心定位算法采用改进型高斯混合模型(GMM)结合小波变换降噪,可有效抑制散斑噪声。研究显示[1],基于Marr小波的边缘检测算法可使定位精度提升至0.12像素(对应0.05μm)。2. 动态补偿算法LTP系列采用专利技术(CN202310456789.1)中的自适应卡尔曼滤波:PYTHONclass AdaptiveKalman:    def update(self, z):        # 实时调整过程噪声协方差Q        self.Q = self.alpha * np.cov(self.x_hist)        # 标准卡尔曼迭代        self.predict()   ...
浏览次数: 21
更新日期: 2025 - 02 - 19
泓川科技LTC系列光谱共焦传感器中的侧向出光探头(LTCR系列),凭借其独特的90°出光设计与紧凑结构,彻底解决了深孔、内壁、微型腔体等复杂场景的测量难题。本文深度解析LTCR系列的技术优势、核心型号对比及典型行业应用,为精密制造提供全新测量视角。一、侧向出光探头技术优势1. 空间适应性革命90°侧向出光:光路与探头轴线垂直,避免传统轴向探头因长度限制无法深入狭窄空间的问题。超薄探头设计:最小直径仅Φ3.8mm(LTCR1500N),可深入孔径≥4mm的深孔/缝隙。案例对比:场景传统轴向探头限制LTCR系列解决方案发动机喷油孔内壁检测探头长度>50mm,无法伸入LTCR1500N(长度85mm,直径Φ3.8mm)直达孔底微型轴承内圈粗糙度轴向光斑被侧壁遮挡LTCR4000侧向光斑精准照射测量面2. 精度与稳定性兼具纳米级静态噪声:LTCR1500静态噪声80nm,线性误差<±0.3μm,媲美轴向探头性能。抗振动设计:光纤与探头刚性耦合,在30m/s²振动环境下,数据波动<±0.1μm。温漂抑制:全系温漂<0.005%FS/℃,-20℃~80℃环境下无需重新校准。3. 多场景安装适配万向调节支架:支持±15°偏转角度微调,兼容非垂直安装场景。气密性封装:IP67防护等级,可直接用于切削液飞溅的加工中心。二、核心型号对比与选型指南型号LTCR1500LTCR1500NLTCR4000LTCR5000探头直径Φ8mmΦ3.8mmΦ8mmΦ12mm测量范围±0.75mm±0.75mm±2mm±2.5mm光斑直径Φ20μmΦ17μmΦ20μmΦ19μm适用场景微型电子元件超细深孔汽车内壁重型机械腔体典型行业半导体封装医疗导管新能源电池航空航天三、...
浏览次数: 23
更新日期: 2025 - 02 - 17
在过去的几年,我们使用的手机,经历了从塑料外壳向金属外壳的进化,金属壳比塑料壳贵的多,也更有高档的感觉。从几十元的塑料外壳,到价值一两百元的金属壳,手机逐渐走向高端化,在这个过程中,一大批中国公司崛起了。实际上,仅仅在2015年以前,市场上手机主流还是塑料后壳,可见这个市场竞争之残酷和激烈。例如比亚迪电子的金属壳业务,年营收竟然高达百亿人民币,通达集团来自金属壳的营收也高达50亿人民币以上,其他还有长盈精密,劲胜精密(现在已经改名叫劲胜智能)等公司也在做金属壳业务。可能很多人看不起塑料,看不起金属加工,实际上,以前我国台湾企业在这方面大赚特赚。实际上,现在台湾的可成科技是台湾非常赚钱的企业之一,该公司就是做金属壳,去年销售额差不多180亿人民币,主要给苹果供货。 在过去的十年,以智能手机为核心的中国电子产业链集体崛起,给中国带来了巨大的变化。在以前,说起高薪的行业,大家都知道有金融,电力,石油,公务员,都是带有垄断或者是高门槛的职业。后来随着中国互联网产业的崛起,程序员成为高薪的群体,知乎上大把说“年薪50万算不上高薪”的用户。我一直怀疑是不是知乎上吹牛的比较多导致。无怪乎前段时间,今日头条月薪一万从知乎挖走300多大V,内容只能发在今日头条,不能再发知乎,光是我知道被挖走的就有18万粉丝的,让知乎大V的形象在我心中瞬间崩塌,为啥一万月薪就被挖走了,说好的50万不算高薪呢...
发布时间: 2018 - 01 - 31
浏览次数:222
在最广泛的定义中,传感器是一种设备,其目的是检测环境中的变化,然后根据这些变化生成信号或数据。所有生物体都含有生物传感器。其中大多数是对光,运动,温度,磁场,重力,湿度,湿度,振动,压力,电场或声音敏感的特殊细胞,仅举几例。多年来,已经开发了数以千计的机械传感器来检测其环境中的变化。仅用于测量压力的传感器就包括以下类型:气压计压力计升压计波登管光纤传感器热灯电离计电离规McLeod测量仪U型振荡管永久性的井下仪表压电陶瓷电阻规压力计触觉传感器时间压力表除了压力之外,人们还开发了用于测量声音,振动,化学成分,电流,电势,磁力,无线电波,流量,流体速度,电离辐射,亚原子粒子,导航仪器,位置,角度,位移,距离,速度,加速度,光学,光,成像,光子,力,密度,水平,热,热,温度,接近度和存在等等。机械传感器的多样性和灵敏度目前远远超出生物传感器的范围。物联网(IoT)的重要意义在于,它将传感器与软件和网络连接相结合,使物体能够收集和交换数据。物联网将产生的数据量将是巨大的。一些专家估计,到2020年,物联网将包括将近500亿个物体。即使现在,CERN的大型强子对撞机(LHC)中的传感器每天也会产生约1 PB字节的数据 - 相当于大约21万张DVD。人工智能(AI)不是物联网最初概念的一部分,但最近人工智能(AI)和物联网(IoT)的整合已经展开。传感器检测环境变化的能力,识别内部故障和偏差,...
发布时间: 2018 - 01 - 31
浏览次数:218
那年SICK光电开关的黑科技系列︱镜反光电的镜头,选“单”还是选“双”原创 2017-12-07 德国西克SICK 德国西克SICK已经有好长时间没跟大家说黑科技了,上一次竟是半年前,主要是在平台排个号不容易。那些没挂念我们的人,请自行面壁。这次要跟大家说说镜反光电。有人会说,这镜反光电有啥好讲的,不就是光电开关加个反射镜子(或是反射胶贴啥的),实现远距离检测,最多在开关里边弄个SICK标配的内置偏光滤镜(如下图),搞定高亮物体的干扰,不就完事儿了呗。对于反光物体的检测,使用具有偏光滤镜的传感器和反射镜,可有效可靠检测反光物体。是的,其实差不多就是这样了。但是在小编即将陈词结案时,审稿老大正在后面磨刀霍霍(哼!这就想交差了?),背脊升起一股寒气。。。好吧,那就继续深入给大家讲下去吧。镜面反射光电开关大家见得多,但大家有留意吗,有一些是长这样的,有两个镜头:还有些是长这样的,只有一个镜头:问题来了:哪个更好?有人说,我咋知道,猜呗!所谓好事成双,多个镜头肯定好啊,我选双镜头!!你看,就这样被下套了。经验告诉我们,越简单的题目答案越玄乎。别着急给答案,让我们先来看看单、双镜头的区别:双镜头如一开始的图所示,发射光路和接收光路分别对应两个镜头,即有两条光路。优点:结构简单,便宜,满足一般应用代表产品:G6 (GL6/GL6G), G10 (GL10/GL10G), H18 (HL18/H...
发布时间: 2018 - 01 - 31
浏览次数:497
安全编码器:安全、系统驱动监控原创 2018-01-04 德国西克SICK 德国西克SICK来自SICK,单一产品自身通过SIL2, PLd认证的新一代安全运动监控系统-DFS60S增量式编码器,丰富了SICK在工业安全系统的产品线。具备可靠电气接线及完美机械特性,简单明了、及灵活的应用功能可选,使得该DFS60S Pro成为固定和移动式安全应用的全能型安全运动控制传感器。与SICK的Flexi Soft及运动监控模块FX3-MOC结合在一起,不需要任何的第三方接口,可以使系统达到PL d (EN ISO 13849-1), 安全完整性2级 (SIL2) (IEC 61508) or SILCL2 (EN 62061). 作为一个可靠的安全信号源,利用DFS60S Pro所提供的速度及方向数据,使得其符合IEC 61508-5-2中对驱动安全功能的要求。安全编码器:实用可靠的驱动监控移动和固定的应用要求与安全技术评估的复杂性要求安全功能需要集成驱动使用认证过的功能安全编码器作为监控,例如DFS60S。对于AGV小车向更复杂导航需求发展的市场发展方向来说,DFS60S无疑是一个完美答案。“自由导航“的车辆的特性是拥有两套独立的驱动系统,这使得它们能够例如原地旋转,以及在使用一个编码器的前提下提供可靠的驱动器监控。如果所使用的编码器没有经过安全认证,像原地旋转这种常的AGV功...
发布时间: 2018 - 01 - 31
浏览次数:263
Hot News / 热点新闻
2025 - 02 - 19
点击次数: 21
一、测量原理与技术框架高精度激光位移传感器实现1μm以下精度的核心在于三角测量法的深度优化。如图1所示,当激光束投射到被测表面时,散射光斑经接收透镜在CMOS/CCD阵列上形成位移图像。根据几何关系:\Delta x = \frac{L \cdot \sinθ}{M \cdot \cos(α±θ)}Δx=M⋅cos(α±θ)L⋅sinθ其中L为基距,θ为接收角,M为放大倍数。要...
2025 - 02 - 17
点击次数: 23
泓川科技LTC系列光谱共焦传感器中的侧向出光探头(LTCR系列),凭借其独特的90°出光设计与紧凑结构,彻底解决了深孔、内壁、微型腔体等复杂场景的测量难题。本文深度解析LTCR系列的技术优势、核心型号对比及典型行业应用,为精密制造提供全新测量视角。一、侧向出光探头技术优势1. 空间适应性革命90°侧向出光:光路与探头轴线垂直,避免传统轴向探头因长度限制无法深入狭窄空间...
 公司总机:0510-88155119  图文传真:0510-88152650  销售移动电话:13301510675  
中国 · 无锡 · 总部地址: 无锡新吴区天山路六号818
我们的工作时间
周一至周五:8:00-18:00 周六至周日:9:00-15:00
About Us
关于泓川科技
专业从事激光位移传感器,激光焊缝跟踪系统研发及销售的科技公司
中国 · 无锡 · 总部地址:无锡新吴区天山路6号
销售热线:0510-88155119 
图文传真:0510-88152650
Working Time
我们的工作时间
周一至周五:8:00-18:00
周六至周日:9:00-15:00
Message 最新动态
亚微米级激光位移传感器的技术实现路径及LTP系列创新设计 2025 - 02 - 19 一、测量原理与技术框架高精度激光位移传感器实现1μm以下精度的核心在于三角测量法的深度优化。如图1所示,当激光束投射到被测表面时,散射光斑经接收透镜在CMOS/CCD阵列上形成位移图像。根据几何关系:\Delta x = \frac{L \cdot \sinθ}{M \cdot \cos(α±θ)}Δx=M⋅cos(α±θ)L⋅sinθ其中L为基距,θ为接收角,M为放大倍数。要实现亚微米分辨率需突破传统三角法的三个技术瓶颈:光斑质量退化、环境噪声干扰、信号处理延迟。二、关键算法突破1. 光斑中心定位算法采用改进型高斯混合模型(GMM)结合小波变换降噪,可有效抑制散斑噪声。研究显示[1],基于Marr小波的边缘检测算法可使定位精度提升至0.12像素(对应0.05μm)。2. 动态补偿算法LTP系列采用专利技术(CN202310456789.1)中的自适应卡尔曼滤波:PYTHONclass AdaptiveKalman:    def update(self, z):        # 实时调整过程噪声协方差Q        se...
LTC系列侧向出光光谱共焦探头(LTCR系列):狭小空间精密测量的终极解决方案 2025 - 02 - 17 泓川科技LTC系列光谱共焦传感器中的侧向出光探头(LTCR系列),凭借其独特的90°出光设计与紧凑结构,彻底解决了深孔、内壁、微型腔体等复杂场景的测量难题。本文深度解析LTCR系列的技术优势、核心型号对比及典型行业应用,为精密制造提供全新测量视角。一、侧向出光探头技术优势1. 空间适应性革命90°侧向出光:光路与探头轴线垂直,避免传统轴向探头因长度限制无法深入狭窄空间的问题。超薄探头设计:最小直径仅Φ3.8mm(LTCR1500N),可深入孔径≥4mm的深孔/缝隙。案例对比:场景传统轴向探头限制LTCR系列解决方案发动机喷油孔内壁检测探头长度>50mm,无法伸入LTCR1500N(长度85mm,直径Φ3.8mm)直达孔底微型轴承内圈粗糙度轴向光斑被侧壁遮挡LTCR4000侧向光斑精准照射测量面2. 精度与稳定性兼具纳米级静态噪声:LTCR1500静态噪声80nm,线性误差<±0.3μm,媲美轴向探头性能。抗振动设计:光纤与探头刚性耦合,在30m/s²振动环境下,数据波动<±0.1μm。温漂抑制:全系温漂<0.005%FS/℃,-20℃~80℃环境下无需重新校准。3. 多场景安装适配万向调节支架:支持±15°偏转角度微调,兼容非垂直安装场景。气密性封装:IP67防护等级,可直接用于切削...
基于激光位移传感器的在机测量系统误差建模与补偿研究 2025 - 02 - 09 摘要为提高激光位移传感器在机测量工件特征的精度,本文针对其关键误差源展开研究并提出补偿策略。实验表明,激光位移传感器的测量误差主要由传感器倾斜误差与数控机床几何误差构成。通过设计倾斜误差实验,利用Legendre多项式建立误差模型,补偿后倾斜误差被控制在±0.025 mm以内;针对机床几何误差,提出基于球杆仪倾斜安装的解耦方法,结合参数化建模对X/Y轴误差进行辨识与补偿。实验验证表明,补偿后工件线性尺寸测量误差小于0.05 mm,角度误差小于0.08°,显著提升了在机测量的精度与可靠性。研究结果为高精度在机测量系统的误差补偿提供了理论依据与实用方法。关键词:工件特征;在机测量;激光位移传感器;误差建模;Legendre多项式1. 引言在机测量技术通过集成测量与加工过程,避免了传统离线测量的重复装夹与搬运误差,成为精密制造领域的关键技术之一。非接触式激光位移传感器凭借其高精度、高采样率及非损伤性等优势,被广泛应用于复杂曲面、微结构等工件的在机测量中。然而,实际测量中,传感器倾斜误差与机床几何误差会显著影响测量结果。现有研究多聚焦单一误差源,缺乏对多误差耦合影响的系统性分析。本文结合理论建模与实验验证,提出一种综合误差补偿方法,为提升在机测量精度提供新的解决方案。2. 误差源分析与建模2.1 激光位移传感器倾斜误差当激光束方向与被测表面法线存在夹角时,倾斜误差会导致...
Copyright ©2005 - 2013 无锡泓川科技有限公司

1

犀牛云提供企业云服务
Our Link
X
3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 0510-88155119
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开