服务热线: 0510-88155119
13301510675@163.com
Language

光谱共焦传感器在厚度测量中的应用研究报告(上)

日期: 2025-01-29
浏览次数: 7
发表于:
来自 泓川科技
发表于: 2025-01-29
浏览次数: 7

一、引言

1.1 研究背景与意义

在工业生产和科学研究中,精确测量物体厚度是保证产品质量、控制生产过程以及推动技术创新的关键环节。随着制造业向高精度、高性能方向发展,对厚度测量技术的精度、速度和适应性提出了更高要求。传统的厚度测量方法,如接触式测量(游标卡尺、千分尺等)不仅效率低下,还容易对被测物体表面造成损伤,且难以满足现代工业高速、在线测量的需求;一些非接触式测量方法,如激光三角法,在面对透明或反光表面时测量精度较低。
光谱共焦传感器作为一种基于光学原理的高精度测量设备,近年来在厚度测量领域展现出独特优势。它利用光谱聚焦原理,通过发射宽光谱光并分析反射光的波长变化来精确计算物体表面位置信息,进而得到厚度值。该传感器具有纳米级测量精度、快速响应、广泛的适用性以及无接触测量等特点,能够有效解决传统测量方法的局限性,为玻璃、薄膜、半导体等行业的厚度测量提供了可靠的解决方案,在提升产品质量、优化生产流程、降低生产成本等方面发挥着重要作用。因此,深入研究光谱共焦传感器测量厚度的应用具有重要的现实意义和广阔的应用前景。

1.2 研究目的与方法

本研究旨在全面深入地了解光谱共焦传感器在测量厚度方面的性能、应用场景、优势以及面临的挑战,为其在工业生产和科研领域的进一步推广和优化应用提供理论支持和实践指导。具体而言,通过对光谱共焦传感器测量厚度的原理进行详细剖析,明确其测量的准确性和可靠性;分析不同行业中光谱共焦传感器测量厚度的实际应用案例,总结其应用效果和适用范围;对比光谱共焦传感器与其他传统及非传统厚度测量方法,突出其在精度、效率、适应性等方面的优势;探讨当前光谱共焦传感器在测量厚度应用中存在的问题,并提出相应的改进措施和发展方向。
在研究过程中,主要采用以下方法:一是文献研究法,广泛查阅国内外相关学术论文、专利文献、技术报告等资料,梳理光谱共焦传感器测量厚度的原理、技术发展历程、应用现状及未来趋势,了解前人的研究成果和研究方法,为本研究提供理论基础和研究思路;二是案例分析法,收集整理不同行业中光谱共焦传感器测量厚度的实际应用案例,对其测量过程、测量结果、应用效果等进行详细分析,总结成功经验和存在的问题,为其他行业的应用提供参考;三是对比分析法,将光谱共焦传感器与游标卡尺、激光三角位移传感器等传统和非传统厚度测量方法进行对比,从测量精度、测量速度、适用范围、成本等多个维度进行分析,明确光谱共焦传感器的优势和不足。

1.3 国内外研究现状

国外对光谱共焦传感器的研究起步较早,技术相对成熟。法国的 STIL、德国的 Precitec 和 Micro-Epsilon、荷兰的 LMI、日本的基恩士和欧姆龙等公司在光谱共焦传感器的研发和生产方面处于领先地位,其产品广泛应用于工业制造、汽车、航空航天等领域。在理论研究方面,国外学者对光谱共焦传感器的测量原理、关键技术(如色散物镜设计、光谱检测算法等)进行了深入研究,不断提升传感器的测量精度和性能。例如,通过优化色散物镜的光学结构,减小色差和像差,提高光斑质量和聚焦精度;开发先进的光谱处理算法,提高对反射光谱信号的分析和处理能力,从而实现更精确的厚度测量。
国内相关研究起步较晚,但近年来发展迅速。上海思显、深圳立仪科技、深圳海伯森等企业和科研机构在光谱共焦传感器的研发和应用方面取得了一定成果,部分产品已达到国际先进水平。国内学者在光谱共焦传感器的关键技术研究、应用拓展等方面也开展了大量工作。例如,在色散物镜设计方面,提出了一些新的设计方法和优化策略,提高了物镜的色散性能和成像质量;在光谱检测装置和算法方面,进行了创新研究,开发出具有自主知识产权的光谱检测系统和数据处理算法,提升了传感器的整体性能。
然而,当前光谱共焦传感器测量厚度的研究仍存在一些不足。一方面,在高精度测量方面,虽然光谱共焦传感器已能实现纳米级精度,但在复杂环境下(如高温、高湿、强电磁干扰等),测量精度的稳定性仍有待提高;另一方面,在应用拓展方面,虽然光谱共焦传感器已在多个行业得到应用,但对于一些特殊材料(如具有复杂光学特性的材料)和特殊形状物体的厚度测量,还需要进一步探索和优化测量方法。此外,光谱共焦传感器的成本相对较高,限制了其在一些对成本敏感领域的大规模应用,如何降低成本也是未来研究的重要方向之一。

二、光谱共焦传感器测量厚度的原理

2.1 光谱共焦技术概述

光谱共焦传感器是一种基于光学色散原理与共焦技术的精密测量仪器。其基本工作原理是利用宽光谱光源(如白光 LED)发出一束包含多种波长的复合光,该复合光经过色散镜头后,由于不同波长的光在光学材料中的折射率不同,会发生色散现象,使得不同波长的光在光轴上聚焦于不同位置,形成一条按波长顺序排列的彩色光谱带,每个波长对应着一个特定的距离值 ,从而建立起距离与波长的对应关系。
当这束色散后的光照射到被测物体表面时,物体表面会反射光线。只有满足共聚焦条件(即特定波长的光聚焦在物体表面)的反射光,才能通过系统中的小孔或狭缝被光谱仪感测到。光谱仪对反射光进行光谱分析,精确测量出反射光的波长,再根据预先标定好的波长 - 距离对应关系,通过计算即可换算出被测物体表面到传感器镜头的距离。这种独特的测量原理使得光谱共焦传感器能够实现高精度、非接触式的测量,对被测物体的材质、颜色、表面粗糙度等具有广泛的适应性,无论是强吸光材料(如黑色橡胶)还是透明材料(如玻璃、薄膜),都能进行准确可靠的测量。

2.2 厚度测量原理详解

对于厚度测量,光谱共焦传感器主要针对透明或半透明材料,利用不同波长的光在材料的不同表面聚焦的特性来实现。当光谱共焦传感器发射的宽光谱光照射到透明材料(如玻璃片、薄膜等)时,一部分光会在材料的前表面反射,而另一部分光则会穿透材料并在材料的后表面反射。由于不同波长的光在色散镜头作用下聚焦位置不同,所以在材料前、后表面反射的光具有不同的波长。
假设前表面反射光的波长为 ,后表面反射光的波长为 ,根据波长 - 距离标定曲线,可以得到与 和 分别对应的距离值 和 ,这两个距离值分别表示传感器镜头到材料前表面和后表面的距离。在已知材料折射率 的情况下(折射率可通过查阅相关资料或使用折光仪预先测量得到),根据几何光学原理和折射定律,可通过以下公式计算材料的厚度 :
其中, 为传感器镜头到材料前、后表面的距离差,通过除以材料的折射率 ,即可得到材料的真实厚度。这种测量方法仅需从材料的一侧进行测量,就能准确获取材料的厚度信息,避免了传统双侧测量方法可能带来的安装误差和测量不便等问题,同时也提高了测量的精度和效率。

2.3 与传统厚度测量方法对比

传统的厚度测量方法主要包括接触式测量(如游标卡尺、千分尺等)和一些简单的非接触式测量(如超声测厚仪、激光三角位移传感器等)。与这些传统方法相比,光谱共焦传感器在测量厚度方面具有显著的优势,但也存在一定的局限性,具体对比如下:
精度方面:游标卡尺和千分尺的测量精度通常在 0.01mm - 0.1mm 量级,对于高精度测量需求往往难以满足。而光谱共焦传感器的测量精度可达到亚微米甚至纳米级,能够精确测量微小尺寸的变化,尤其适用于对厚度精度要求极高的领域,如半导体制造、光学镜片生产等。例如,在半导体晶圆厚度测量中,光谱共焦传感器可以精确测量出晶圆厚度的微小偏差,确保芯片制造过程的一致性和良品率 。
测量方式:游标卡尺和千分尺属于接触式测量工具,测量时需要与被测物体表面直接接触,这不仅容易对被测物体表面造成划伤、磨损等损伤,还可能由于测量力的不均匀导致测量误差。而光谱共焦传感器采用非接触式测量方式,避免了对被测物体的物理接触,不会对物体表面造成任何损伤,特别适用于对表面质量要求高的软质材料、精密零件以及易损材料的厚度测量,如柔性电路板、光学薄膜等。
测量效率:使用游标卡尺和千分尺进行测量时,通常需要人工操作,测量速度较慢,难以实现快速、在线的批量测量。光谱共焦传感器具有高速采样和快速响应的特点,能够实现实时、动态的厚度测量,可与自动化生产线集成,对生产过程中的产品进行在线监测和质量控制,大大提高了生产效率和质量检测的及时性。例如,在薄膜生产线上,光谱共焦传感器可以实时监测薄膜的厚度变化,一旦发现厚度异常,立即发出警报并进行调整,有效避免了次品的产生。
适用范围:传统测量工具在测量一些特殊材料(如透明材料、反光材料、表面粗糙材料等)时存在局限性。例如,游标卡尺和千分尺难以准确测量透明材料的厚度;激光三角位移传感器在测量透明或高反光材料时,容易出现反射光干扰、信号丢失等问题,导致测量精度下降。光谱共焦传感器对不同材质、颜色、表面特性的物体都具有良好的适应性,无论是透明的玻璃、薄膜,还是反光的金属、镜面,亦或是表面粗糙的橡胶、纸张等,都能进行准确的厚度测量。
设备成本与复杂性:游标卡尺和千分尺结构简单、价格低廉,操作相对容易,对操作人员的技术要求较低。光谱共焦传感器作为一种精密的光学测量设备,其结构复杂,包含光源、色散镜头、光谱仪等多个精密部件,设备成本较高;同时,其测量原理和数据处理过程相对复杂,需要专业的技术人员进行操作和维护 。但随着技术的不断发展和应用规模的扩大,光谱共焦传感器的成本有望逐渐降低,其应用也将更加广泛。

三、光谱共焦传感器测量厚度的优势

3.1 高精度测量

光谱共焦传感器在厚度测量方面展现出卓越的高精度特性。其核心在于独特的光谱聚焦原理,通过对不同波长光的精确分析来确定物体表面位置,从而实现高精度的厚度测量。通常情况下,光谱共焦传感器的测量精度可达亚微米级,甚至在一些高端产品中能达到纳米级精度。
在半导体制造领域,芯片制造过程中对晶圆厚度的精度要求极高,厚度的微小偏差都可能影响芯片的性能和成品率。例如,某半导体生产企业使用光谱共焦传感器对 12 英寸晶圆进行厚度测量,该传感器的测量精度可达 ±0.5μm ,在多次测量同一批次晶圆时,测量结果的重复性误差小于 ±0.3μm,能够准确检测出晶圆厚度的细微变化,有效保障了芯片制造的质量和稳定性。
在光学镜片生产中,镜片的厚度均匀性直接影响其光学性能。以某光学仪器公司生产的高精度相机镜头镜片为例,使用光谱共焦传感器进行厚度测量,能够精确检测到镜片不同位置厚度的差异,测量精度达到 ±0.1μm,确保了镜片的光学性能符合严格的标准,提高了产品的良品率。

3.2 非接触测量

光谱共焦传感器采用非接触式测量方式,这使其在厚度测量中具有显著优势。在测量过程中,传感器无需与被测物体直接接触,避免了因接触而对被测物体表面造成的划伤、磨损、变形等损伤,特别适用于对表面质量要求高的软质材料、精密零件以及易损材料的厚度测量。
在柔性电路板(FPC)的制造过程中,FPC 材质柔软且表面精细,传统接触式测量方法极易造成线路损坏或变形,影响产品性能。使用光谱共焦传感器对 FPC 进行厚度测量,可在不接触 FPC 的情况下,快速、准确地获取其厚度信息,确保了 FPC 的质量和完整性。
对于一些表面涂层较薄且脆弱的材料,如汽车车身的漆面、电子产品外壳的镀膜等,接触式测量可能会破坏涂层,影响产品的外观和防护性能。光谱共焦传感器能够实现非接触测量,准确测量涂层厚度,为产品质量控制提供可靠数据。

3.3 适应复杂测量环境

光谱共焦传感器具备出色的环境适应性,能够在多种复杂环境下稳定工作,保证厚度测量的准确性和可靠性。
在温度变化较大的环境中,例如在玻璃制造车间,玻璃成型过程中温度高达数百摄氏度,而后续加工和检测环节温度又会迅速降低。光谱共焦传感器采用特殊的光学材料和结构设计,具有良好的温度稳定性,能够在较宽的温度范围内(如 - 20℃至 100℃)正常工作,测量精度受温度影响极小。某玻璃生产企业在生产线上使用光谱共焦传感器对高温玻璃进行厚度测量,即使在玻璃温度高达 600℃时,传感器仍能稳定工作,测量精度保持在 ±1μm 以内,有效保障了生产过程的质量控制。
在存在振动的环境中,如机械制造车间、汽车生产线等,振动会对测量设备产生干扰,导致测量误差。光谱共焦传感器内部采用了先进的减振和抗干扰技术,能够有效抑制振动对测量的影响。某汽车零部件制造企业在发动机缸体生产线上使用光谱共焦传感器测量缸体壁的厚度,尽管生产线存在较大振动,传感器依然能够准确测量,测量结果的稳定性和可靠性满足生产要求。

3.4 对多种材料的适用性

光谱共焦传感器对不同材质、颜色、表面特性的物体都具有良好的适用性,能够准确测量各种材料的厚度。
无论是金属材料(如钢铁、铝合金、铜合金等),还是非金属材料(如塑料、橡胶、陶瓷、玻璃等),光谱共焦传感器都能通过其独特的光谱分析技术,准确识别不同材料表面反射光的波长信息,从而实现精确的厚度测量。在金属加工行业,对金属板材、管材的厚度测量是保证产品质量的关键环节。使用光谱共焦传感器对不同材质的金属板材进行测量,如对厚度为 5mm 的铝合金板材进行测量,测量精度可达 ±0.05mm ,能够满足金属加工行业对精度的严格要求。
对于透明材料(如玻璃、透明塑料薄膜、光学镜片等)和强吸光材料(如黑色橡胶、碳纤维复合材料等),传统测量方法往往存在局限性。而光谱共焦传感器能够利用其共焦技术和光谱分析能力,有效解决透明材料的折射、反射干扰以及强吸光材料的低反射率问题,实现对这些特殊材料的准确厚度测量。在光学薄膜生产中,薄膜的厚度和均匀性对其光学性能至关重要。光谱共焦传感器能够精确测量透明光学薄膜的厚度,即使薄膜厚度仅为几纳米,也能保证测量精度在 ±0.1nm 以内,为光学薄膜的生产和质量控制提供了有力支持。

四、光谱共焦传感器测量厚度的应用场景

4.1 玻璃行业

4.1.1 平板玻璃生产线上的厚度监控

在浮法玻璃生产过程中,玻璃液在锡液表面摊平、延展,逐渐冷却形成平板玻璃。玻璃厚度的均匀性直接影响其强度、光学性能以及后续加工的适用性。传统的测量方法难以满足生产线上对厚度实时、高精度监测的需求。
将光谱共焦传感器安装在生产线的关键位置,如锡槽出口、退火窑入口等,能够对玻璃带进行在线实时测量。当玻璃带在生产线上匀速移动时,传感器发射的宽光谱光照射到玻璃表面,分别在玻璃的上、下表面反射,通过精确分析反射光的波长变化,可快速计算出玻璃的厚度。传感器以极高的采样频率(如每秒数千次)对玻璃厚度进行连续测量,一旦检测到厚度偏差超出预设范围,系统会立即发出警报,并将数据反馈给生产控制系统,生产人员可据此及时调整生产工艺参数,如玻璃液流量、拉引速度、温度分布等,确保玻璃厚度始终保持在规定的公差范围内(通常为 ±0.1mm 甚至更小) ,有效减少因厚度不均导致的废品率,提高生产效率和产品质量。

4.1.2 智能手机屏幕玻璃的质量控制

智能手机屏幕玻璃作为保护屏幕和实现触摸功能的关键部件,对其厚度的精度和均匀性要求极高。在手机屏幕玻璃的加工过程中,从原片切割、磨边、抛光到强化处理等各个环节,都可能导致玻璃厚度发生变化。
利用光谱共焦传感器对手机屏幕玻璃进行全方位的厚度检测。在切割工序前,对玻璃原片进行厚度测量,确保原片厚度符合标准,为后续切割提供准确的数据基础;在切割过程中,实时监测切割后的玻璃片厚度,及时发现因切割刀具磨损、切割参数不当等原因引起的厚度偏差,以便调整切割工艺,优化切割路径,提高切割精度,减少因切割误差导致的玻璃片报废;在磨边和抛光工序后,再次测量玻璃的厚度,检查磨边和抛光过程是否对玻璃厚度造成过度损耗或不均匀变化,保证玻璃的厚度均匀性满足设计要求;在强化处理后,测量玻璃厚度的变化,评估强化工艺对玻璃厚度的影响,确保强化后的玻璃既能满足强度要求,又能保持合适的厚度,提升手机屏幕玻璃的整体质量和性能,增强产品的市场竞争力。

4.1.3 汽车安全玻璃的检测

汽车安全玻璃主要包括前挡风玻璃、侧窗玻璃和后挡风玻璃等,其厚度和质量直接关系到汽车的安全性能。汽车安全玻璃不仅需要具备一定的强度和抗冲击性能,还需满足光学性能要求,以确保驾驶员的视线清晰。
在汽车安全玻璃的生产过程中,光谱共焦传感器发挥着重要的检测作用。在玻璃成型阶段,对玻璃的厚度进行实时监测,保证玻璃厚度均匀一致,为后续的加工和性能提升奠定基础;在夹层玻璃生产过程中,测量玻璃原片与中间夹层材料(如 PVB 胶片)的组合厚度,确保夹层玻璃的总厚度符合相关标准和设计要求,同时监测夹层材料的厚度均匀性,防止因夹层厚度不均导致玻璃在受到冲击时出现分层、破裂等安全隐患;在钢化玻璃生产中,通过测量钢化前后玻璃的厚度变化,评估钢化工艺的效果,确保钢化玻璃的厚度公差在允许范围内,保证玻璃的强度和安全性。通过对每一片汽车安全玻璃进行严格的厚度检测,为汽车的安全行驶提供可靠保障。

4.2 薄膜材料行业

4.2.1 电子器件绝缘薄膜厚度测量

在电子器件制造中,绝缘薄膜广泛应用于集成电路、印刷电路板、电容器等领域,其厚度对电子器件的性能和可靠性起着关键作用。例如,在集成电路中,绝缘薄膜用于隔离不同的导电层,防止漏电和短路,其厚度的微小偏差可能会影响电子信号的传输速度和稳定性,甚至导致器件失效。
在电子器件绝缘薄膜的生产和加工过程中,光谱共焦传感器能够实现对薄膜厚度的精确测量。在薄膜沉积过程中,实时监测薄膜的生长厚度,通过反馈控制沉积设备的参数(如沉积速率、沉积时间等),精确控制薄膜的最终厚度,确保每一层绝缘薄膜的厚度都符合设计要求,提高电子器件的性能一致性和良品率;在对已制成的电子器件进行质量检测时,使用光谱共焦传感器对绝缘薄膜的厚度进行抽检,及时发现因生产工艺波动或其他因素导致的薄膜厚度异常,保证电子器件的质量和可靠性。

4.2.2 食品包装塑料薄膜厚度检测

食品包装塑料薄膜作为食品与外界环境的隔离层,其厚度直接影响包装的阻隔性能、机械强度和保鲜效果。厚度不均匀的塑料薄膜可能导致包装的密封性下降,使食品容易受到微生物污染、氧化和水分散失的影响,从而缩短食品的保质期。
在食品包装塑料薄膜的生产线上,光谱共焦传感器可对薄膜进行在线厚度检测。通过在薄膜生产设备的出料口附近安装传感器,实时监测薄膜在生产过程中的厚度变化,及时发现因挤出机螺杆转速不稳定、模具温度不均匀、原料配方波动等原因引起的薄膜厚度偏差。一旦检测到厚度异常,系统立即发出警报,并反馈给生产控制系统,操作人员可据此调整生产参数,保证薄膜厚度的均匀性和稳定性,确保食品包装塑料薄膜的质量符合食品安全和包装性能要求,延长食品的保质期,保障消费者的健康和权益。

4.3 光伏行业

4.3.1 光伏板硅片厚度测量

光伏板硅片是光伏发电的核心部件,其厚度对光伏电池的转换效率、生产成本和机械强度都有重要影响。较薄的硅片可以降低材料成本,但如果厚度过薄,可能会导致硅片在生产和使用过程中容易破裂,影响光伏电池的性能和可靠性;而较厚的硅片虽然机械强度较高,但会增加材料成本和光生载流子的复合概率,降低光伏电池的转换效率。
在光伏板硅片的生产过程中,通常采用对射式安装光谱共焦传感器的方式来测量硅片厚度。将两个光谱共焦传感器分别安装在硅片的两侧,相对放置,一个传感器发射的光穿透硅片后,被另一侧的传感器接收。通过分析接收到的光的波长信息,计算出传感器与硅片表面的距离,从而得到硅片的厚度。这种测量方式可以避免因硅片表面不平整或反射率差异对测量结果的影响,实现高精度的厚度测量,测量精度可达 ±1μm 以内 。通过对硅片厚度的精确控制,优化光伏电池的性能,降低生产成本,提高光伏产业的竞争力。

4.3.2 光伏板硅片栅线厚度测量

光伏板硅片栅线是收集和传输光生载流子的重要结构,其厚度和质量直接影响光伏电池的电学性能。合适的栅线厚度可以降低电阻损耗,提高电流收集效率,从而提升光伏电池的转换效率。
利用光谱共焦传感器单探头对硅片栅线进行厚度测量。将传感器安装在高精度的移动平台上,通过控制平台的移动,使传感器探头沿着栅线方向进行扫描测量。传感器发射的光聚焦在栅线表面,反射光被收集并分析,根据反射光的波长变化计算出栅线的厚度。光谱共焦传感器能够精确测量出栅线的厚度,并且可以检测出栅线厚度的均匀性,为光伏电池的生产工艺优化提供重要的数据支持。通过对栅线厚度的精确测量和控制,提高光伏电池的电学性能,进一步提升光伏板的发电效率。


News / 推荐阅读 +More
2025 - 02 - 01
点击次数: 4
一、背景与需求在印刷、包装、金属加工等行业中,材料(如纸张、薄膜、金属薄板等)通过传送带或滚筒输送时,常因机械振动、静电吸附或操作失误导致单张材料与双张材料重叠。若未及时检测,重叠材料可能造成设备卡顿、加工精度下降甚至产品报废。传统的检测方法(如光电传感器或机械触头)易受材料透明度、颜色或表面特性的干扰,而对射式超声波传感器凭借其非接触、高适应性及强抗干扰能力,成为解决此类问题的理想选择。二、对射超声波传感器的工作原理对射式超声波传感器由发射器和接收器组成,发射器发出高频声波(通常40kHz~200kHz),接收器检测穿透材料的声波信号。声波在穿透材料时会发生以下变化:信号衰减:单张材料厚度较薄,声波衰减较小;双张材料因厚度增加,声波能量被吸收或散射更多,接收端信号强度显著降低。飞行时间(ToF):声波穿透材料的传播时间与材料厚度正相关,双张材料会延长传播时间。通过分析接收信号的强度或传播...
2025 - 01 - 29
点击次数: 7
五、光谱共焦传感器测量厚度的局限性及解决措施5.1 局限性分析5.1.1 测量范围限制光谱共焦传感器的测量范围相对有限,一般在几毫米到几十毫米之间。这是由于其测量原理基于色散物镜对不同波长光的聚焦特性,测量范围主要取决于色散物镜的轴向色差范围以及光谱仪的工作波段。在实际应用中,对于一些大尺寸物体的厚度测量,如厚壁管材、大型板材等,可能需要多次测量拼接数据,增加了测量的复杂性和误差来源。例如,在测量厚度超过传感器量程的大型金属板材时,需要移动传感器进行多次测量,然后将测量数据进行拼接处理,但在拼接过程中可能会因测量位置的定位误差、测量角度的变化等因素导致测量结果的不准确。5.1.2 对被测物体表面状态的要求虽然光谱共焦传感器对多种材料具有良好的适用性,但被测物体表面的粗糙度、平整度等因素仍会对测量精度产生一定影响。当被测物体表面粗糙度较大时,表面的微观起伏会导致反射光的散射和漫反射增强,使得...
2025 - 01 - 29
点击次数: 7
一、引言1.1 研究背景与意义在工业生产和科学研究中,精确测量物体厚度是保证产品质量、控制生产过程以及推动技术创新的关键环节。随着制造业向高精度、高性能方向发展,对厚度测量技术的精度、速度和适应性提出了更高要求。传统的厚度测量方法,如接触式测量(游标卡尺、千分尺等)不仅效率低下,还容易对被测物体表面造成损伤,且难以满足现代工业高速、在线测量的需求;一些非接触式测量方法,如激光三角法,在面对透明或反光表面时测量精度较低。光谱共焦传感器作为一种基于光学原理的高精度测量设备,近年来在厚度测量领域展现出独特优势。它利用光谱聚焦原理,通过发射宽光谱光并分析反射光的波长变化来精确计算物体表面位置信息,进而得到厚度值。该传感器具有纳米级测量精度、快速响应、广泛的适用性以及无接触测量等特点,能够有效解决传统测量方法的局限性,为玻璃、薄膜、半导体等行业的厚度测量提供了可靠的解决方案,在提升产品质量、优化生产...
2025 - 01 - 22
点击次数: 17
一、引言1.1 研究背景与目的在当今科技迅猛发展的时代,传感器作为获取信息的关键设备,在工业自动化、智能制造、航空航天、汽车制造等众多领域中发挥着不可或缺的重要作用。激光位移传感器凭借其高精度、非接触式测量、快速响应等显著优势,成为了现代精密测量领域的核心设备之一。近年来,随着国内制造业的转型升级以及对高精度测量需求的不断攀升,我国传感器市场呈现出蓬勃发展的态势。然而,长期以来,高端激光位移传感器市场大多被国外品牌所占据,这不仅限制了国内相关产业的自主发展,还在一定程度上影响了国家的产业安全。在此背景下,国产激光位移传感器的研发与推广显得尤为重要。本研究聚焦于国产激光位移传感器 HCM 系列,旨在深入剖析该系列产品的技术特点、性能优势、应用场景以及市场竞争力。通过对 HCM 系列产品的全面研究,期望能够为相关行业的企业提供有价值的参考依据,助力其在设备选型、技术升级等方面做出更为明智的决策...
2025 - 01 - 20
点击次数: 25
五、应用优势深度解析5.1 提升测量精度与效率光谱共焦传感器在 IC 芯片测量中,能够实现快速、高精度的测量,这一特性极大地提升了生产效率。其工作原理基于独特的光学共焦成像和光谱解析技术,使其能够精准地捕捉到芯片表面的细微特征和尺寸变化。在测量芯片关键尺寸时,如线宽和间距,光谱共焦传感器可以达到亚微米级甚至更高的精度,能够精确测量出极其微小的尺寸偏差,为芯片制造工艺的精细控制提供了有力保障。同时,该传感器具备快速的数据采集和处理能力。在实际生产线上,它可以在短时间内对大量芯片进行测量,大大减少了检测时间。与传统测量方法相比,光谱共焦传感器能够实现自动化、连续测量,无需人工频繁干预,有效提高了生产效率,满足了大规模生产对测量速度和精度的双重要求。 5.2 降低成本与风险采用光谱共焦传感器进行 IC 芯片测量,有助于显著降低生产成本与风险。一方面,高精度的测量能够有效减少因尺寸偏差或...
About Us
关于泓川科技
专业从事激光位移传感器,激光焊缝跟踪系统研发及销售的科技公司
中国 · 无锡 · 总部地址:无锡新吴区天山路6号
销售热线:0510-88155119 
图文传真:0510-88152650
Working Time
我们的工作时间
周一至周五:8:00-18:00
周六至周日:9:00-15:00
Shown 企业秀 More
  • 1
    2023 - 09 - 26
    1 激光光热技术测厚:原理是利用激光照射材料,产生的热量使材料产生变化,再通过光学方式检测这种变化以确定材料的厚度。优点是非接触式、无损伤、准确;缺点也是显而易见的,对于颜色、形状、表面纹理等都有不同程度的影响。2 白光干涉测厚:原理是使用白光干涉仪产生干涉图案,然后通过分析干涉图案得材料厚度。优点是测量精度高、灵敏度高;缺点是设备复杂且成本高昂。3 激光干涉测厚:主要是利用激光波的相干性,测量物体的干涉条纹来反推出物体的厚度。优点是测量精度高、速度快;但激光源的稳定性和调节技术要求比较高。4 光谱共聚焦测厚:该方法是根据材料对不同波长光的反射、折射和吸收特性,同时探测所有波长的光谱,从而计算出材料厚度。优点是测量准确、适用范围广;缺点是设备复杂、操作要求高。5 椭圆偏光法测厚:原理是利用光的偏振特性对材料进行测量,根据计算出材料厚度。优点是接触、无损伤,但适用范围有限。6 红外吸收法测厚:红外吸收法是指通过测定红外光在材料中吸收的程度来推断优点是测量过程简单、直观、精度高;缺点是对材料的红外吸收特性有严格要求。7 X/β射线测厚:主要是利用X射线或者β射线穿透材料时,穿透的射线强度和物体的厚度之间存在一定的关系。优点是精确、可靠;缺点是人体安全需要考虑。8 电容测厚:原理是利用两极板间的电容量与介质厚度成正比,通过测量电容量来测量厚度。优点是设备简单、便宜;缺点是精度较低。9 反...
  • 2
    2024 - 03 - 05
    在测量被透明物体覆盖的目标时,环境照明补偿和透视测量是提高测量准确性的重要手段。这些技术的应用,在智能手机等电子设备的制造过程中,具有至关重要的作用。首先,让我们来探讨一下环境照明补偿的作用。在生产线环境中,照明条件往往并不稳定,这会对测量精度产生严重影响。环境照明补偿技术通过自动调整传感器参数,以补偿外部光照条件的变化,使得测量系统能在不同的照明条件下都能保持稳定的测量性能。这就使得我们在测量被透明物体(如手机屏幕)覆盖的目标时,能够得到更为准确的结果。其次,透视测量技术则能够解决透明物体对测量造成的干扰。由于透明物体会让部分光线穿过,使得传统的测量技术难以准确捕捉目标的位置和形状。而透视测量技术则能够通过特殊的光学设计和算法处理,使得传感器能够“看透”透明物体,直接对其背后的目标进行测量。这样,我们就可以在不接触目标的情况下,对其进行准确的测量。在智能手机等电子设备的制造过程中,这两种技术都有着广泛的应用。例如,在手机屏幕的生产过程中,环境照明补偿技术可以帮助我们确保屏幕在各种光线条件下都能显示清晰。而透视测量技术则可以用于测量手机屏幕下的各种元器件,如触摸屏、摄像头等,确保它们的位置和尺寸都符合设计要求。此外,这两种技术还可以结合使用,以提高测量的精度和效率。例如,我们可以先使用透视测量技术确定目标的位置,然后使用环境照明补偿技术对其进行精确测量。这样,我们不仅可以得到更准确...
  • 3
    2025 - 01 - 16
    一、引言1.1 研究背景与目的在汽车行业迈向智能化与自动化的进程中,先进驾驶辅助系统(ADAS)作为关键技术,正发挥着愈发重要的作用。ADAS 凭借多种传感器与智能算法,能够实时监测车辆周边环境,为驾驶员提供预警与辅助控制,极大地提升了驾驶的安全性与舒适性。本报告旨在深入剖析《ADAS 相关工具 核心功能 & 技术》中所涉及的 ADAS 相关工具应用案例,通过详细描述各案例的具体应用场景、工作原理及达成的效果,深度挖掘这些工具在汽车制造及 ADAS 系统开发过程中的重要价值,为行业内相关人员提供具有实际参考意义的信息,助力推动 ADAS 技术的进一步发展与广泛应用。 1.2 研究方法与数据来源本报告通过对《ADAS 相关工具 核心功能 & 技术》进行全面细致的整理与深入分析,从中系统地提取出各类 ADAS 相关工具的应用案例。在分析过程中,对每个案例的技术原理、应用场景以及所实现的功能进行了详细阐述,并结合实际情况进行了深入探讨。本文所引用的 ADAS 相关工具的应用案例及技术原理均来自《ADAS 相关工具 核心功能 & 技术》文档,该文档为此次研究提供了丰富且详实的一手资料,确保了研究的准确性与可靠性。 二、车载相机应用案例剖析2.1 底部填充胶涂抹高度测量2.1.1 案例描述在汽车电子制造中,车载相机的底部填充胶涂抹高度对于确保相机的...
  • 4
    2022 - 12 - 03
    无论是半导体加工过程中还是锂电池制造过程中总是伴随着腐蚀,高温振动等恶劣环境,为了保证生产的高效稳定,无锡泓川科技推出了多种具有不同钢铁不锈钢金属外壳的激光位移传感器,具有高防护性,可以从容的面对各种复杂的环境。在生产过程中总是在恶劣的环境中进行。在当今的环境中,自动化解决方案有时会暴露在非常困难的生产条件下。而且还必须具有可靠的功能,这对传感器技术来说是一个挑战。无锡泓川科技有限公司广泛的测试程序,确保了我们的激光位移传感器能够承受恶劣的环境要求。例如在电子行业中电子产品在我们日常生活中扮演着重要的角色。无论是在电动巴士和汽车的电池中,还是在太阳能发电模块中。自动化生产在电子工业的许多领域都是非常复杂的。真空和高温环境是随处可见的。使用的化学物质具有腐蚀性。这不仅影响生产条件和机器在许多应用领域,传感器解决方案也面临着新的挑战。那么能满足这些挑战的出色的激光位移传感器是什么样的呢?在某些情况他必须能抗抵抗至少70度到100度的高温。或者他必须能承受真空环境并且具有腐蚀性,化学物质的过程中也能抗拒。他应该有特别耐用的材料制成如不锈钢甚至特氟龙材料。无锡泓川科技有限公司提供范围广泛的激光位移传感器和激光位移传感器技术,尤其适用于恶劣环境。
  • 5
    2024 - 01 - 21
    摘要:本文将详细阐述高精度激光测距传感器在锂电池极片厚度测量中的应用情况。我们使用的激光测距传感器能够准确测量涂层厚度在1-10μm之间的极片,而且其精度能达到0.15μm。并且,通过特殊的同步计算过程和测厚技术,我们成功解决了由于极片在制造过程中的起伏变动带来的测量误差。我们的传感器还具有定制化的宽光斑特性,能够应对涂层厚度不均匀的情况,从而得到极片全表面的平均值。1. 导言锂电池在移动设备、电动汽车等领域的应用日益广泛,其中极片的涂层厚度对电池性能影响显著。传统的接触式和机械式测量方法经常无法满足需求,而我们的高精度激光测距传感器正好拥有非接触测量和高精度测量的优势。2. 测量系统与技术我们使用的是一种高精度激光测距传感器,它可以准确测量出微米级别的厚度,并且精度能够达到0.15μm。我们通过使用专业的同步运算程序和射测厚技术,成功地解决了由于极片在制造过程中的起伏变动带来的测量误差问题。此外,该传感器还具有定制化的宽光斑特性,能够应对涂层厚度不均匀的情况,从而得到极片全表面的平均值。3. 实验结果与效果分析多次实验结果证明,我们使用的激光测距传感器在锂电池极片厚度测量中展现出了可靠性和准确性。实验结果显示,该传感器能够稳定地测量出微米级别的涂层厚度。通过专业的同步运算程序和射测厚技术,我们成功地解决了测量误差问题。定制化的宽光斑特性使得传感器可以应对涂层厚度不均匀的情况,从而...
  • 6
    2023 - 09 - 30
    一、介绍在许多须要进行精确检查的工业生产领域,视觉系统的高度定位已成为一项关键技术。尤其在物料变化情况复杂或需要精确测量的应用场景中,如何通过视觉系统稳定地执行Z轴方向定位是个重要议题。而在这方面,高精度激光测距传感器无疑可以提供解决方法。二、解决方案1、测量初始化首先提供一个安全并且可控的环境以保证传感器的测量工作。将目标工件放在固定的位置上,并确保其稳固不动来为测量过程提供准确的基础。2、高精度激光测距传感器启动测量启动高精度激光测距传感器对目标进行测量。传感器会发出一束红外激光,该激光会瞄准工件并反射回传感器,创建出一个明确的测量路径。传感器具有强大的抗干扰能力,即使目标工件材质变化,也能够维持稳定的测量结果。3、数据处理与分析接下来进入数据处理阶段。传感器会捕捉反射回来的激光,然后利用内部的光学组件和测量算法进行数据分析,计算出其对应的Z轴坐标值。4、结果反馈与定位最后,我们将测量结果(即Z轴的坐标值)传递给工业相机,一旦接收到数据,相机就能在Z轴上进行精确的位置定位。在这个过程中,即使工件移动或者改变位置,我们的系统也能实时根据新的测量结果进行调整,保证视觉系统始终在正确的位置对工件进行检测。5、持续追踪与更新系统会持续监测工件的位置,并根据需要实时更新Z轴的高度信息。这样,在整个生产过程中,无论工件如何变化或移动,我们的视觉系统都能进行稳定、准确的检测。三、行业应用1....
  • 7
    2024 - 12 - 11
    激光位移传感器作为一种高精度、非接触式的测量工具,在工业自动化、科研、医疗等多个领域发挥着重要作用。其制造过程涉及多个环节和专业技术,以下将详细介绍激光位移传感器的制造全过程及所使用的零部件。一、设计与研发激光位移传感器的制造首先始于设计与研发阶段。根据市场需求和技术趋势,设计团队会确定传感器的主要性能指标,如测量范围、精度、分辨率等。接着,选择合适的激光发射器和接收器,设计光学系统和信号处理电路。这一阶段的关键在于确保传感器能够满足预期的测量要求,并具备良好的稳定性和可靠性。二、原材料采购在设计完成后,进入原材料采购阶段。激光位移传感器的主要零部件包括:激光器:产生高方向性的激光束,用于照射被测物体。激光器的选择直接影响传感器的测量精度和稳定性。光电二极管或CCD/CMOS图像传感器:作为接收器,接收被测物体反射回来的激光,并将其转换为电信号。光学透镜组:包括发射透镜和接收透镜,用于调整激光束的形状和发散角,确保精确照射和接收反射光。电路板:搭载信号处理电路,对接收到的电信号进行处理和分析。外壳:保护传感器内部组件,并提供安装接口。三、加工与制造在原材料到位后,进入加工与制造阶段。这一阶段包括:零部件加工:对金属外壳进行切割、钻孔和打磨等处理,以满足设计要求。同时,对光学透镜进行精密加工,确保其光学性能。组件组装:将激光器、光电二极管、光学透镜组等零部件组装到电路板上,形成完整的...
  • 8
    2025 - 01 - 16
    四、彩色激光同轴位移计应用实例洞察4.1 镜面相关测量4.1.1 镜面的倾斜及运动检测在众多光学设备以及对镜面精度要求极高的工业场景中,准确检测镜面的倾斜及运动状态是确保设备正常运行和产品质量的关键环节。彩色激光同轴位移计 CL 系列在这一领域展现出了卓越的性能。该系列位移计主要基于同轴测量原理,其独特之处在于采用了彩色共焦方式。在工作时,设备发射出特定的光束,这些光束垂直照射到镜面上。由于镜面具有良好的反射特性,光束会被垂直反射回来。CL 系列位移计通过精确分析反射光的波长、强度以及相位等信息,能够精准计算出镜面的倾斜角度以及运动的位移变化。在实际应用场景中,以高端投影仪的镜头镜面检测为例。投影仪镜头镜面的微小倾斜或运动偏差都可能导致投影画面出现变形、模糊等问题,严重影响投影效果。使用 CL 系列彩色激光同轴位移计,在投影仪生产线上,对每一个镜头镜面进行实时检测。当镜面发生倾斜时,位移计能够迅速捕捉到反射光的变化,并通过内置的算法立即计算出倾斜角度。一旦检测到倾斜角度超出预设的标准范围,系统会及时发出警报,提示操作人员进行调整。对于镜头镜面在使用过程中的微小运动,该位移计同样能够敏锐感知,并将运动数据精确反馈给控制系统,以便对投影画面进行实时校正,确保投影质量始终保持在最佳状态。 4.1.2 MEMS 镜倾斜检测在微机电系统(MEMS)领域,MEMS 镜作为核心部件,其...
Message 最新动态
利用对射超声波传感器监测工业生产中单双张重叠问题的技术应用案例 2025 - 02 - 01 一、背景与需求在印刷、包装、金属加工等行业中,材料(如纸张、薄膜、金属薄板等)通过传送带或滚筒输送时,常因机械振动、静电吸附或操作失误导致单张材料与双张材料重叠。若未及时检测,重叠材料可能造成设备卡顿、加工精度下降甚至产品报废。传统的检测方法(如光电传感器或机械触头)易受材料透明度、颜色或表面特性的干扰,而对射式超声波传感器凭借其非接触、高适应性及强抗干扰能力,成为解决此类问题的理想选择。二、对射超声波传感器的工作原理对射式超声波传感器由发射器和接收器组成,发射器发出高频声波(通常40kHz~200kHz),接收器检测穿透材料的声波信号。声波在穿透材料时会发生以下变化:信号衰减:单张材料厚度较薄,声波衰减较小;双张材料因厚度增加,声波能量被吸收或散射更多,接收端信号强度显著降低。飞行时间(ToF):声波穿透材料的传播时间与材料厚度正相关,双张材料会延长传播时间。通过分析接收信号的强度或传播时间差异,可精准判断材料是否为单张或双张。三、传感器选型与参数优势根据用户提供的传感器参数(HUA单双张检测系列),推荐以下型号及配置:推荐型号:HUA-18GM55-200-3E1(M18尺寸,3路PNP常开输出)关键参数:检测范围:发射器与接收器间距20-60mm,盲区7mm,适应厚度0.01mm~3mm的材料。输出类型:3路开关量输出(支持单双张状态分通道指示)。响应延时:10ms,匹配生产...
光谱共焦传感器在厚度测量中的应用研究报告(下) 2025 - 01 - 29 五、光谱共焦传感器测量厚度的局限性及解决措施5.1 局限性分析5.1.1 测量范围限制光谱共焦传感器的测量范围相对有限,一般在几毫米到几十毫米之间。这是由于其测量原理基于色散物镜对不同波长光的聚焦特性,测量范围主要取决于色散物镜的轴向色差范围以及光谱仪的工作波段。在实际应用中,对于一些大尺寸物体的厚度测量,如厚壁管材、大型板材等,可能需要多次测量拼接数据,增加了测量的复杂性和误差来源。例如,在测量厚度超过传感器量程的大型金属板材时,需要移动传感器进行多次测量,然后将测量数据进行拼接处理,但在拼接过程中可能会因测量位置的定位误差、测量角度的变化等因素导致测量结果的不准确。5.1.2 对被测物体表面状态的要求虽然光谱共焦传感器对多种材料具有良好的适用性,但被测物体表面的粗糙度、平整度等因素仍会对测量精度产生一定影响。当被测物体表面粗糙度较大时,表面的微观起伏会导致反射光的散射和漫反射增强,使得反射光的强度分布不均匀,从而影响光谱仪对反射光波长的准确检测,导致测量误差增大。对于表面平整度较差的物体,如存在明显翘曲或弯曲的板材,会使传感器与物体表面的距离在不同位置发生变化,超出传感器的测量精度范围,进而影响厚度测量的准确性。例如,在测量表面粗糙的橡胶板材时,由于橡胶表面的微观纹理和不规则性,测量精度会明显下降,难以达到对光滑表面测量时的高精度水平。5.1.3 成本相对较高光谱共焦传感器作为...
光谱共焦传感器在厚度测量中的应用研究报告(上) 2025 - 01 - 29 一、引言1.1 研究背景与意义在工业生产和科学研究中,精确测量物体厚度是保证产品质量、控制生产过程以及推动技术创新的关键环节。随着制造业向高精度、高性能方向发展,对厚度测量技术的精度、速度和适应性提出了更高要求。传统的厚度测量方法,如接触式测量(游标卡尺、千分尺等)不仅效率低下,还容易对被测物体表面造成损伤,且难以满足现代工业高速、在线测量的需求;一些非接触式测量方法,如激光三角法,在面对透明或反光表面时测量精度较低。光谱共焦传感器作为一种基于光学原理的高精度测量设备,近年来在厚度测量领域展现出独特优势。它利用光谱聚焦原理,通过发射宽光谱光并分析反射光的波长变化来精确计算物体表面位置信息,进而得到厚度值。该传感器具有纳米级测量精度、快速响应、广泛的适用性以及无接触测量等特点,能够有效解决传统测量方法的局限性,为玻璃、薄膜、半导体等行业的厚度测量提供了可靠的解决方案,在提升产品质量、优化生产流程、降低生产成本等方面发挥着重要作用。因此,深入研究光谱共焦传感器测量厚度的应用具有重要的现实意义和广阔的应用前景。1.2 研究目的与方法本研究旨在全面深入地了解光谱共焦传感器在测量厚度方面的性能、应用场景、优势以及面临的挑战,为其在工业生产和科研领域的进一步推广和优化应用提供理论支持和实践指导。具体而言,通过对光谱共焦传感器测量厚度的原理进行详细剖析,明确其测量的准确性和可靠性;分析不同行业中...
Copyright ©2005 - 2013 无锡泓川科技有限公司

1

犀牛云提供企业云服务
Our Link
X
3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 0510-88155119
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开