服务热线: 0510-88155119
13301510675@163.com
Language

光谱共焦传感器在厚度测量中的应用研究报告(上)

日期: 2025-01-29
浏览次数: 89
发表于:
来自 泓川科技
发表于: 2025-01-29
浏览次数: 89

一、引言

1.1 研究背景与意义

在工业生产和科学研究中,精确测量物体厚度是保证产品质量、控制生产过程以及推动技术创新的关键环节。随着制造业向高精度、高性能方向发展,对厚度测量技术的精度、速度和适应性提出了更高要求。传统的厚度测量方法,如接触式测量(游标卡尺、千分尺等)不仅效率低下,还容易对被测物体表面造成损伤,且难以满足现代工业高速、在线测量的需求;一些非接触式测量方法,如激光三角法,在面对透明或反光表面时测量精度较低。
光谱共焦传感器作为一种基于光学原理的高精度测量设备,近年来在厚度测量领域展现出独特优势。它利用光谱聚焦原理,通过发射宽光谱光并分析反射光的波长变化来精确计算物体表面位置信息,进而得到厚度值。该传感器具有纳米级测量精度、快速响应、广泛的适用性以及无接触测量等特点,能够有效解决传统测量方法的局限性,为玻璃、薄膜、半导体等行业的厚度测量提供了可靠的解决方案,在提升产品质量、优化生产流程、降低生产成本等方面发挥着重要作用。因此,深入研究光谱共焦传感器测量厚度的应用具有重要的现实意义和广阔的应用前景。

1.2 研究目的与方法

本研究旨在全面深入地了解光谱共焦传感器在测量厚度方面的性能、应用场景、优势以及面临的挑战,为其在工业生产和科研领域的进一步推广和优化应用提供理论支持和实践指导。具体而言,通过对光谱共焦传感器测量厚度的原理进行详细剖析,明确其测量的准确性和可靠性;分析不同行业中光谱共焦传感器测量厚度的实际应用案例,总结其应用效果和适用范围;对比光谱共焦传感器与其他传统及非传统厚度测量方法,突出其在精度、效率、适应性等方面的优势;探讨当前光谱共焦传感器在测量厚度应用中存在的问题,并提出相应的改进措施和发展方向。
在研究过程中,主要采用以下方法:一是文献研究法,广泛查阅国内外相关学术论文、专利文献、技术报告等资料,梳理光谱共焦传感器测量厚度的原理、技术发展历程、应用现状及未来趋势,了解前人的研究成果和研究方法,为本研究提供理论基础和研究思路;二是案例分析法,收集整理不同行业中光谱共焦传感器测量厚度的实际应用案例,对其测量过程、测量结果、应用效果等进行详细分析,总结成功经验和存在的问题,为其他行业的应用提供参考;三是对比分析法,将光谱共焦传感器与游标卡尺、激光三角位移传感器等传统和非传统厚度测量方法进行对比,从测量精度、测量速度、适用范围、成本等多个维度进行分析,明确光谱共焦传感器的优势和不足。

1.3 国内外研究现状

国外对光谱共焦传感器的研究起步较早,技术相对成熟。法国的 STIL、德国的 Precitec 和 Micro-Epsilon、荷兰的 LMI、日本的基恩士和欧姆龙等公司在光谱共焦传感器的研发和生产方面处于领先地位,其产品广泛应用于工业制造、汽车、航空航天等领域。在理论研究方面,国外学者对光谱共焦传感器的测量原理、关键技术(如色散物镜设计、光谱检测算法等)进行了深入研究,不断提升传感器的测量精度和性能。例如,通过优化色散物镜的光学结构,减小色差和像差,提高光斑质量和聚焦精度;开发先进的光谱处理算法,提高对反射光谱信号的分析和处理能力,从而实现更精确的厚度测量。
国内相关研究起步较晚,但近年来发展迅速。上海思显、深圳立仪科技、深圳海伯森等企业和科研机构在光谱共焦传感器的研发和应用方面取得了一定成果,部分产品已达到国际先进水平。国内学者在光谱共焦传感器的关键技术研究、应用拓展等方面也开展了大量工作。例如,在色散物镜设计方面,提出了一些新的设计方法和优化策略,提高了物镜的色散性能和成像质量;在光谱检测装置和算法方面,进行了创新研究,开发出具有自主知识产权的光谱检测系统和数据处理算法,提升了传感器的整体性能。
然而,当前光谱共焦传感器测量厚度的研究仍存在一些不足。一方面,在高精度测量方面,虽然光谱共焦传感器已能实现纳米级精度,但在复杂环境下(如高温、高湿、强电磁干扰等),测量精度的稳定性仍有待提高;另一方面,在应用拓展方面,虽然光谱共焦传感器已在多个行业得到应用,但对于一些特殊材料(如具有复杂光学特性的材料)和特殊形状物体的厚度测量,还需要进一步探索和优化测量方法。此外,光谱共焦传感器的成本相对较高,限制了其在一些对成本敏感领域的大规模应用,如何降低成本也是未来研究的重要方向之一。

二、光谱共焦传感器测量厚度的原理

2.1 光谱共焦技术概述

光谱共焦传感器是一种基于光学色散原理与共焦技术的精密测量仪器。其基本工作原理是利用宽光谱光源(如白光 LED)发出一束包含多种波长的复合光,该复合光经过色散镜头后,由于不同波长的光在光学材料中的折射率不同,会发生色散现象,使得不同波长的光在光轴上聚焦于不同位置,形成一条按波长顺序排列的彩色光谱带,每个波长对应着一个特定的距离值 ,从而建立起距离与波长的对应关系。
当这束色散后的光照射到被测物体表面时,物体表面会反射光线。只有满足共聚焦条件(即特定波长的光聚焦在物体表面)的反射光,才能通过系统中的小孔或狭缝被光谱仪感测到。光谱仪对反射光进行光谱分析,精确测量出反射光的波长,再根据预先标定好的波长 - 距离对应关系,通过计算即可换算出被测物体表面到传感器镜头的距离。这种独特的测量原理使得光谱共焦传感器能够实现高精度、非接触式的测量,对被测物体的材质、颜色、表面粗糙度等具有广泛的适应性,无论是强吸光材料(如黑色橡胶)还是透明材料(如玻璃、薄膜),都能进行准确可靠的测量。

2.2 厚度测量原理详解

对于厚度测量,光谱共焦传感器主要针对透明或半透明材料,利用不同波长的光在材料的不同表面聚焦的特性来实现。当光谱共焦传感器发射的宽光谱光照射到透明材料(如玻璃片、薄膜等)时,一部分光会在材料的前表面反射,而另一部分光则会穿透材料并在材料的后表面反射。由于不同波长的光在色散镜头作用下聚焦位置不同,所以在材料前、后表面反射的光具有不同的波长。
假设前表面反射光的波长为 ,后表面反射光的波长为 ,根据波长 - 距离标定曲线,可以得到与 和 分别对应的距离值 和 ,这两个距离值分别表示传感器镜头到材料前表面和后表面的距离。在已知材料折射率 的情况下(折射率可通过查阅相关资料或使用折光仪预先测量得到),根据几何光学原理和折射定律,可通过以下公式计算材料的厚度 :
其中, 为传感器镜头到材料前、后表面的距离差,通过除以材料的折射率 ,即可得到材料的真实厚度。这种测量方法仅需从材料的一侧进行测量,就能准确获取材料的厚度信息,避免了传统双侧测量方法可能带来的安装误差和测量不便等问题,同时也提高了测量的精度和效率。

2.3 与传统厚度测量方法对比

传统的厚度测量方法主要包括接触式测量(如游标卡尺、千分尺等)和一些简单的非接触式测量(如超声测厚仪、激光三角位移传感器等)。与这些传统方法相比,光谱共焦传感器在测量厚度方面具有显著的优势,但也存在一定的局限性,具体对比如下:
精度方面:游标卡尺和千分尺的测量精度通常在 0.01mm - 0.1mm 量级,对于高精度测量需求往往难以满足。而光谱共焦传感器的测量精度可达到亚微米甚至纳米级,能够精确测量微小尺寸的变化,尤其适用于对厚度精度要求极高的领域,如半导体制造、光学镜片生产等。例如,在半导体晶圆厚度测量中,光谱共焦传感器可以精确测量出晶圆厚度的微小偏差,确保芯片制造过程的一致性和良品率 。
测量方式:游标卡尺和千分尺属于接触式测量工具,测量时需要与被测物体表面直接接触,这不仅容易对被测物体表面造成划伤、磨损等损伤,还可能由于测量力的不均匀导致测量误差。而光谱共焦传感器采用非接触式测量方式,避免了对被测物体的物理接触,不会对物体表面造成任何损伤,特别适用于对表面质量要求高的软质材料、精密零件以及易损材料的厚度测量,如柔性电路板、光学薄膜等。
测量效率:使用游标卡尺和千分尺进行测量时,通常需要人工操作,测量速度较慢,难以实现快速、在线的批量测量。光谱共焦传感器具有高速采样和快速响应的特点,能够实现实时、动态的厚度测量,可与自动化生产线集成,对生产过程中的产品进行在线监测和质量控制,大大提高了生产效率和质量检测的及时性。例如,在薄膜生产线上,光谱共焦传感器可以实时监测薄膜的厚度变化,一旦发现厚度异常,立即发出警报并进行调整,有效避免了次品的产生。
适用范围:传统测量工具在测量一些特殊材料(如透明材料、反光材料、表面粗糙材料等)时存在局限性。例如,游标卡尺和千分尺难以准确测量透明材料的厚度;激光三角位移传感器在测量透明或高反光材料时,容易出现反射光干扰、信号丢失等问题,导致测量精度下降。光谱共焦传感器对不同材质、颜色、表面特性的物体都具有良好的适应性,无论是透明的玻璃、薄膜,还是反光的金属、镜面,亦或是表面粗糙的橡胶、纸张等,都能进行准确的厚度测量。
设备成本与复杂性:游标卡尺和千分尺结构简单、价格低廉,操作相对容易,对操作人员的技术要求较低。光谱共焦传感器作为一种精密的光学测量设备,其结构复杂,包含光源、色散镜头、光谱仪等多个精密部件,设备成本较高;同时,其测量原理和数据处理过程相对复杂,需要专业的技术人员进行操作和维护 。但随着技术的不断发展和应用规模的扩大,光谱共焦传感器的成本有望逐渐降低,其应用也将更加广泛。

三、光谱共焦传感器测量厚度的优势

3.1 高精度测量

光谱共焦传感器在厚度测量方面展现出卓越的高精度特性。其核心在于独特的光谱聚焦原理,通过对不同波长光的精确分析来确定物体表面位置,从而实现高精度的厚度测量。通常情况下,光谱共焦传感器的测量精度可达亚微米级,甚至在一些高端产品中能达到纳米级精度。
在半导体制造领域,芯片制造过程中对晶圆厚度的精度要求极高,厚度的微小偏差都可能影响芯片的性能和成品率。例如,某半导体生产企业使用光谱共焦传感器对 12 英寸晶圆进行厚度测量,该传感器的测量精度可达 ±0.5μm ,在多次测量同一批次晶圆时,测量结果的重复性误差小于 ±0.3μm,能够准确检测出晶圆厚度的细微变化,有效保障了芯片制造的质量和稳定性。
在光学镜片生产中,镜片的厚度均匀性直接影响其光学性能。以某光学仪器公司生产的高精度相机镜头镜片为例,使用光谱共焦传感器进行厚度测量,能够精确检测到镜片不同位置厚度的差异,测量精度达到 ±0.1μm,确保了镜片的光学性能符合严格的标准,提高了产品的良品率。

3.2 非接触测量

光谱共焦传感器采用非接触式测量方式,这使其在厚度测量中具有显著优势。在测量过程中,传感器无需与被测物体直接接触,避免了因接触而对被测物体表面造成的划伤、磨损、变形等损伤,特别适用于对表面质量要求高的软质材料、精密零件以及易损材料的厚度测量。
在柔性电路板(FPC)的制造过程中,FPC 材质柔软且表面精细,传统接触式测量方法极易造成线路损坏或变形,影响产品性能。使用光谱共焦传感器对 FPC 进行厚度测量,可在不接触 FPC 的情况下,快速、准确地获取其厚度信息,确保了 FPC 的质量和完整性。
对于一些表面涂层较薄且脆弱的材料,如汽车车身的漆面、电子产品外壳的镀膜等,接触式测量可能会破坏涂层,影响产品的外观和防护性能。光谱共焦传感器能够实现非接触测量,准确测量涂层厚度,为产品质量控制提供可靠数据。

3.3 适应复杂测量环境

光谱共焦传感器具备出色的环境适应性,能够在多种复杂环境下稳定工作,保证厚度测量的准确性和可靠性。
在温度变化较大的环境中,例如在玻璃制造车间,玻璃成型过程中温度高达数百摄氏度,而后续加工和检测环节温度又会迅速降低。光谱共焦传感器采用特殊的光学材料和结构设计,具有良好的温度稳定性,能够在较宽的温度范围内(如 - 20℃至 100℃)正常工作,测量精度受温度影响极小。某玻璃生产企业在生产线上使用光谱共焦传感器对高温玻璃进行厚度测量,即使在玻璃温度高达 600℃时,传感器仍能稳定工作,测量精度保持在 ±1μm 以内,有效保障了生产过程的质量控制。
在存在振动的环境中,如机械制造车间、汽车生产线等,振动会对测量设备产生干扰,导致测量误差。光谱共焦传感器内部采用了先进的减振和抗干扰技术,能够有效抑制振动对测量的影响。某汽车零部件制造企业在发动机缸体生产线上使用光谱共焦传感器测量缸体壁的厚度,尽管生产线存在较大振动,传感器依然能够准确测量,测量结果的稳定性和可靠性满足生产要求。

3.4 对多种材料的适用性

光谱共焦传感器对不同材质、颜色、表面特性的物体都具有良好的适用性,能够准确测量各种材料的厚度。
无论是金属材料(如钢铁、铝合金、铜合金等),还是非金属材料(如塑料、橡胶、陶瓷、玻璃等),光谱共焦传感器都能通过其独特的光谱分析技术,准确识别不同材料表面反射光的波长信息,从而实现精确的厚度测量。在金属加工行业,对金属板材、管材的厚度测量是保证产品质量的关键环节。使用光谱共焦传感器对不同材质的金属板材进行测量,如对厚度为 5mm 的铝合金板材进行测量,测量精度可达 ±0.05mm ,能够满足金属加工行业对精度的严格要求。
对于透明材料(如玻璃、透明塑料薄膜、光学镜片等)和强吸光材料(如黑色橡胶、碳纤维复合材料等),传统测量方法往往存在局限性。而光谱共焦传感器能够利用其共焦技术和光谱分析能力,有效解决透明材料的折射、反射干扰以及强吸光材料的低反射率问题,实现对这些特殊材料的准确厚度测量。在光学薄膜生产中,薄膜的厚度和均匀性对其光学性能至关重要。光谱共焦传感器能够精确测量透明光学薄膜的厚度,即使薄膜厚度仅为几纳米,也能保证测量精度在 ±0.1nm 以内,为光学薄膜的生产和质量控制提供了有力支持。

四、光谱共焦传感器测量厚度的应用场景

4.1 玻璃行业

4.1.1 平板玻璃生产线上的厚度监控

在浮法玻璃生产过程中,玻璃液在锡液表面摊平、延展,逐渐冷却形成平板玻璃。玻璃厚度的均匀性直接影响其强度、光学性能以及后续加工的适用性。传统的测量方法难以满足生产线上对厚度实时、高精度监测的需求。
将光谱共焦传感器安装在生产线的关键位置,如锡槽出口、退火窑入口等,能够对玻璃带进行在线实时测量。当玻璃带在生产线上匀速移动时,传感器发射的宽光谱光照射到玻璃表面,分别在玻璃的上、下表面反射,通过精确分析反射光的波长变化,可快速计算出玻璃的厚度。传感器以极高的采样频率(如每秒数千次)对玻璃厚度进行连续测量,一旦检测到厚度偏差超出预设范围,系统会立即发出警报,并将数据反馈给生产控制系统,生产人员可据此及时调整生产工艺参数,如玻璃液流量、拉引速度、温度分布等,确保玻璃厚度始终保持在规定的公差范围内(通常为 ±0.1mm 甚至更小) ,有效减少因厚度不均导致的废品率,提高生产效率和产品质量。

4.1.2 智能手机屏幕玻璃的质量控制

智能手机屏幕玻璃作为保护屏幕和实现触摸功能的关键部件,对其厚度的精度和均匀性要求极高。在手机屏幕玻璃的加工过程中,从原片切割、磨边、抛光到强化处理等各个环节,都可能导致玻璃厚度发生变化。
利用光谱共焦传感器对手机屏幕玻璃进行全方位的厚度检测。在切割工序前,对玻璃原片进行厚度测量,确保原片厚度符合标准,为后续切割提供准确的数据基础;在切割过程中,实时监测切割后的玻璃片厚度,及时发现因切割刀具磨损、切割参数不当等原因引起的厚度偏差,以便调整切割工艺,优化切割路径,提高切割精度,减少因切割误差导致的玻璃片报废;在磨边和抛光工序后,再次测量玻璃的厚度,检查磨边和抛光过程是否对玻璃厚度造成过度损耗或不均匀变化,保证玻璃的厚度均匀性满足设计要求;在强化处理后,测量玻璃厚度的变化,评估强化工艺对玻璃厚度的影响,确保强化后的玻璃既能满足强度要求,又能保持合适的厚度,提升手机屏幕玻璃的整体质量和性能,增强产品的市场竞争力。

4.1.3 汽车安全玻璃的检测

汽车安全玻璃主要包括前挡风玻璃、侧窗玻璃和后挡风玻璃等,其厚度和质量直接关系到汽车的安全性能。汽车安全玻璃不仅需要具备一定的强度和抗冲击性能,还需满足光学性能要求,以确保驾驶员的视线清晰。
在汽车安全玻璃的生产过程中,光谱共焦传感器发挥着重要的检测作用。在玻璃成型阶段,对玻璃的厚度进行实时监测,保证玻璃厚度均匀一致,为后续的加工和性能提升奠定基础;在夹层玻璃生产过程中,测量玻璃原片与中间夹层材料(如 PVB 胶片)的组合厚度,确保夹层玻璃的总厚度符合相关标准和设计要求,同时监测夹层材料的厚度均匀性,防止因夹层厚度不均导致玻璃在受到冲击时出现分层、破裂等安全隐患;在钢化玻璃生产中,通过测量钢化前后玻璃的厚度变化,评估钢化工艺的效果,确保钢化玻璃的厚度公差在允许范围内,保证玻璃的强度和安全性。通过对每一片汽车安全玻璃进行严格的厚度检测,为汽车的安全行驶提供可靠保障。

4.2 薄膜材料行业

4.2.1 电子器件绝缘薄膜厚度测量

在电子器件制造中,绝缘薄膜广泛应用于集成电路、印刷电路板、电容器等领域,其厚度对电子器件的性能和可靠性起着关键作用。例如,在集成电路中,绝缘薄膜用于隔离不同的导电层,防止漏电和短路,其厚度的微小偏差可能会影响电子信号的传输速度和稳定性,甚至导致器件失效。
在电子器件绝缘薄膜的生产和加工过程中,光谱共焦传感器能够实现对薄膜厚度的精确测量。在薄膜沉积过程中,实时监测薄膜的生长厚度,通过反馈控制沉积设备的参数(如沉积速率、沉积时间等),精确控制薄膜的最终厚度,确保每一层绝缘薄膜的厚度都符合设计要求,提高电子器件的性能一致性和良品率;在对已制成的电子器件进行质量检测时,使用光谱共焦传感器对绝缘薄膜的厚度进行抽检,及时发现因生产工艺波动或其他因素导致的薄膜厚度异常,保证电子器件的质量和可靠性。

4.2.2 食品包装塑料薄膜厚度检测

食品包装塑料薄膜作为食品与外界环境的隔离层,其厚度直接影响包装的阻隔性能、机械强度和保鲜效果。厚度不均匀的塑料薄膜可能导致包装的密封性下降,使食品容易受到微生物污染、氧化和水分散失的影响,从而缩短食品的保质期。
在食品包装塑料薄膜的生产线上,光谱共焦传感器可对薄膜进行在线厚度检测。通过在薄膜生产设备的出料口附近安装传感器,实时监测薄膜在生产过程中的厚度变化,及时发现因挤出机螺杆转速不稳定、模具温度不均匀、原料配方波动等原因引起的薄膜厚度偏差。一旦检测到厚度异常,系统立即发出警报,并反馈给生产控制系统,操作人员可据此调整生产参数,保证薄膜厚度的均匀性和稳定性,确保食品包装塑料薄膜的质量符合食品安全和包装性能要求,延长食品的保质期,保障消费者的健康和权益。

4.3 光伏行业

4.3.1 光伏板硅片厚度测量

光伏板硅片是光伏发电的核心部件,其厚度对光伏电池的转换效率、生产成本和机械强度都有重要影响。较薄的硅片可以降低材料成本,但如果厚度过薄,可能会导致硅片在生产和使用过程中容易破裂,影响光伏电池的性能和可靠性;而较厚的硅片虽然机械强度较高,但会增加材料成本和光生载流子的复合概率,降低光伏电池的转换效率。
在光伏板硅片的生产过程中,通常采用对射式安装光谱共焦传感器的方式来测量硅片厚度。将两个光谱共焦传感器分别安装在硅片的两侧,相对放置,一个传感器发射的光穿透硅片后,被另一侧的传感器接收。通过分析接收到的光的波长信息,计算出传感器与硅片表面的距离,从而得到硅片的厚度。这种测量方式可以避免因硅片表面不平整或反射率差异对测量结果的影响,实现高精度的厚度测量,测量精度可达 ±1μm 以内 。通过对硅片厚度的精确控制,优化光伏电池的性能,降低生产成本,提高光伏产业的竞争力。

4.3.2 光伏板硅片栅线厚度测量

光伏板硅片栅线是收集和传输光生载流子的重要结构,其厚度和质量直接影响光伏电池的电学性能。合适的栅线厚度可以降低电阻损耗,提高电流收集效率,从而提升光伏电池的转换效率。
利用光谱共焦传感器单探头对硅片栅线进行厚度测量。将传感器安装在高精度的移动平台上,通过控制平台的移动,使传感器探头沿着栅线方向进行扫描测量。传感器发射的光聚焦在栅线表面,反射光被收集并分析,根据反射光的波长变化计算出栅线的厚度。光谱共焦传感器能够精确测量出栅线的厚度,并且可以检测出栅线厚度的均匀性,为光伏电池的生产工艺优化提供重要的数据支持。通过对栅线厚度的精确测量和控制,提高光伏电池的电学性能,进一步提升光伏板的发电效率。


News / 推荐阅读 +More
2025 - 04 - 02
点击次数: 0
以下为HC16-15国产激光位移传感器与进口ILD1420-10的对比分析报告,重点围绕技术参数、性能指标及国产替代可行性展开:一、核心参数对比指标HC16-15(泓川科技)ILD1420-10(Micro-Epsilon)测量范围±5mm(总10mm)10mm(SMR 20mm至EMR 30mm)线性度±0.1% F.S.±0.08% F.S.重复精度1μm0.5μm采样频率3000Hz(最高)4000Hz(最高)光源波长655nm(可见红光)670nm(可见红光)输出接口RS485(Modbus RTU)、0-10V/4-20mARS422、4-20mA/1-5V工作温度-10°C ~ +50°C0°C ~ +50°C防护等级IP67IP65尺寸(mm)44×31×18约47.5×14(...
2025 - 04 - 02
点击次数: 0
一、引言1.1 研究背景与意义在现代工业生产与精密测量领域,对高精度、高可靠性位移测量技术的需求与日俱增。激光位移传感器凭借其非接触测量、高精度、高响应速度以及抗干扰能力强等显著优势,已成为实现自动化生产、质量控制与精密检测的关键技术手段,广泛应用于汽车制造、电子生产、机械加工、航空航天等众多行业。optoNCDT 1420 系列激光位移传感器作为德国米铱(Micro-Epsilon)公司推出的微型化、高精度位移测量解决方案,在尺寸、性能与功能集成等方面展现出独特的优势。其紧凑的设计使其能够轻松集成到空间受限的设备与系统中,满足了现代工业对设备小型化、集成化的发展需求;同时,该系列传感器具备出色的测量精度与稳定性,可实现对微小位移变化的精确检测,为精密测量与控制提供了可靠的数据支持。深入研究 optoNCDT 1420 系列激光位移传感器的技术原理、性能特点及应用场景,对于推动激光位移测量...
2025 - 03 - 27
点击次数: 31
1. 引言在工业自动化领域,激光位移传感器是实现高精度非接触测量的核心器件。基恩士 IL-S025 作为市场主流产品,以其 1μm 重复精度和稳定性能著称。然而,随着国产传感器技术的突破,泓川科技 LTM3-030/LTM3-030W 型号凭借更高的性能参数和经济性,为用户提供了新的选择。本文将从技术参数、性能表现、应用场景等方面,深入对比分析两者的替代可行性。 2. 核心技术参数对比参数基恩士 IL-S025泓川科技 LTM3-030/LTM3-030W对比结论重复精度1μm0.25μm(LTM3-030)/ 0.25μm(LTM3-030W)LTM3 系列更优(4 倍精度提升)线性误差±0.075% F.S.(±5mm 范围)LTM3-030W 更优(接近 IL-S025)测量范围±5mm(参考距离 25mm)±5mm(参考距离 3...
2025 - 03 - 22
点击次数: 29
一、核心性能参数对比:精度与场景适配性参数泓川科技LTC2600(标准版)泓川LTC2600H(定制版)基恩士CL-P015(标准版)参考距离15 mm15 mm15 mm测量范围±1.3 mm±1.3 mm±1.3 mm光斑直径9/18/144 μm(多模式)支持定制(最小φ5 μm)ø25 μm(单点式)重复精度50 nm50 nm100 nm线性误差±0.49 μm(标准模式)分辨率0.03 μm0.03 μm0.25 μm(理论值)防护等级IP40IP67(定制)IP67耐温范围0°C ~ +50°C-20°C ~ +200°C(定制)0°C ~ +50°C真空支持不支持支持(10^-3 Pa,定制)支持(10^-6 Pa,标准版)重量228 g...
2025 - 03 - 14
点击次数: 31
泓川科技LTP系列激光位移传感器全面匹配您的技术需求尊敬的客户: 感谢您对泓川科技产品的关注!针对您提出的高精度激光位移传感器需求,我司LTP系列产品凭借卓越性能与灵活定制能力,可完全满足您的技术要求,具体对应如下:一、核心参数精准匹配需求项LTP400(200mm)LTP450(500mm)量程200mm(±100mm)500mm(±250mm)线性度±0.03%F.S.(优于要求)±0.05%F.S.(达标)重复精度(静态)±0.03%F.S.±0.05%F.S.采样频率50kHz全量程(达标)50kHz全量程(达标)输出信号-10V~10V(选配模块)-10V~10V(选配模块)技术优势说明:超高采样频率:LTP400/LTP450全量程下支持50kHz采样(48kHz),且可缩短量程至20%时提升至160kHz,满足高速动...
About Us
关于泓川科技
专业从事激光位移传感器,激光焊缝跟踪系统研发及销售的科技公司
中国 · 无锡 · 总部地址:无锡新吴区天山路6号
销售热线:0510-88155119 
图文传真:0510-88152650
Working Time
我们的工作时间
周一至周五:8:00-18:00
周六至周日:9:00-15:00
Shown 企业秀 More
  • 1
    2022 - 12 - 01
    在烟草分级及仓储环节中有大量的自动化设备,比如高速往复运动的穿梭车堆垛机等,如何建立完善的安全预防措施,保障作业人员的人身安全是企业在思考的方向,我们在烟草工业内部系统里面已经积累了众多的成功案例,我们会通过机械安全控制以及电器这三个维度来帮助企业进行评估,具体的改造场景有,立库输送管道出入口防护百度极速可在经过现场评估后我们会给客户出具评估报告和推荐的安全整改。                机械设备,例如马舵机,泄漏机缠绕机等在快消品行业是广泛存在的,特别是码作机器,经常需要操作人员频繁介入该区域应用的工业机器人运行速度快存在着较高的安全隐患,在转运站码垛技术入口,经常采用一套光幕和光电传感器来实现屏蔽功能,从而实现人物分离,在这个应用中,以物体在传中带上面时,车场光电传感器,从而激活,屏蔽功能,当你为触发屏蔽功能很简单,有些操作人员会拿纸箱或者其他东西遮挡这个光电传感器,从而很容易就操纵了这个屏蔽功能,存在着很大的安全隐患,针对这个问题,我们开发出创新高效的是入口防护替代方案,智能门控系统,无锡屏蔽传感器就和实现pp功能,这项专利技术是基于。             专利技术是激光幕,使出入口防务变得更加高效...
  • 2
    2023 - 09 - 11
    非接触测量涂布厚度的行业报告摘要:本报告将介绍非接触测量涂布厚度的行业应用场景及解决方案。涂布厚度的准确测量在多个行业中至关重要,如带钢、薄膜、造纸、无纺布、金属箔材、玻璃和电池隔膜等行业。传统的测量方法存在一定的局限性,而非接触测量技术的应用可以提供更准确、高效的测量解决方案。本报告将重点介绍X射线透射法、红外吸收法和光学成像测量方法这三种主要的非接触测量解决方案,并分析其适用场景、原理和优势。引言涂布厚度是涂覆工艺中的一个重要参数,对于保证产品质量和性能具有重要意义。传统的测量方法,如接触式测量和传感器测量,存在一定局限性,如易受污染、操作复杂和不适用于特定行业。而非接触测量方法以其高精度、实时性和便捷性成为行业中的理想选择。行业应用场景涂布厚度的非接触测量方法适用于多个行业,包括但不限于以下领域:带钢:用于热镀锌、涂覆和镀铝等行业,对涂层和薄膜的厚度进行测量。薄膜:用于光学、电子、半导体等行业,对各种功能薄膜的厚度进行测量。造纸:用于测量纸张的涂布、涂胶和覆膜等工艺中的厚度。无纺布:用于纺织和过滤行业,对无纺布的厚度进行测量。金属箔材:用于食品包装、电子器件等行业,对箔材的厚度进行测量。玻璃:用于建筑和汽车行业,对玻璃的涂层厚度进行测量。电池隔膜:用于电池制造行业,对隔膜的厚度进行测量。解决方案一:X射线透射法X射线透射法是一种常用的非接触涂布厚度测量方法,其测量原理基于射线...
  • 3
    2025 - 03 - 04
    一、核心参数对比表参数项LK-G08(基恩士)LTPD08(泓川科技国产)参考距离8 mm8 mm检测范围±0.8 mm±0.8 mm线性度±0.05% F.S.±0.03% F.S.重复精度0.02 μm0.03 μm采样频率20 μs1 ms(6档可调)6.25 μs1 ms(多档可调)激光类别1类(JIS C6802)2类(安全等级更高)光源功率0.3 mW0.5 mW(可定制更高功率)防护等级未标注IP67工作温度+10+40°C0+50°C(可定制-4070°C)通讯接口未标注RS485、TCP/IP、开发包支持供电电压-DC 936V(±10%波动兼容)重量245 g213 g二、性能差异深度解析1. 测量性能精度与速度: LK-G08在重复精度(0.02μm)上略优,适合超精密场景;而LTPD08的线性度(±0.03% F.S.)更优,且在采样频率上支持最高6.25μs(缩小量程时可达160kHz),动态响应能力更强。激光适应性: LTPD08提供405nm蓝光版本可选,可应对高反光或透明材质测量,基恩士仅支持655nm红光。2. 环境适应性防护等级: LTPD08的IP67防护显著优于未标注防护的LK-G08,适...
  • 4
    2023 - 10 - 11
    激光测距传感器对射技术在自动化生产线上的应用愈发广泛,今天我们将介绍一个基于两台激光测距传感器上下对射来检测橡胶带接缝的案例。在橡胶带的生产过程中,橡胶带的接缝是一个非常关键的部位。由于橡胶带在运输行走的过程中,其厚度会随着接缝的存在而变化。接缝是由两个橡胶带重叠在一起形成的,因此接缝的厚度显然会大于橡胶带本身。为了保证产品质量和生产效率,我们需要及时准确地检测并计数橡胶带的接缝。我们采用了两台激光测距传感器进行上下对射的方式来实现这一目标。具体操作如下:首先,将一台激光测距传感器安装在橡胶带上方,另一台安装在橡胶带下方,使得两台传感器之间垂直对射。通过激光束的反射和接收时间的测量,可以获取到橡胶带表面和接缝的距离信息。当橡胶带的接缝位置经过测距传感器时,根据上文提到的厚度大于阈值的特点,我们可以通过一个内部的比较器来判断是否检测到了接缝。当橡胶带的厚度数据高于预设的阈值时,比较器将输出一个开关量信号,表示接缝位置被检测到。通过这种方式,我们不需要具体测量接缝的厚度数值,只需要一个开关量信号,就可以实现对橡胶带接缝位置质量的检测和接缝数量的计数。这对于保证产品质量、提高生产效率具有重要意义。总结起来,利用两台激光测距传感器上下对射的方法,结合内部的比较器功能,我们可以实现对橡胶带接缝位置的检测。这种技术应用既简单又有效,可以在自动化生产线中广泛应用,提高生产效率并确保产品质量的稳定...
  • 5
    2025 - 01 - 04
    在工业生产的众多环节中,板材厚度测量的重要性不言而喻。无论是建筑领域的钢梁结构、汽车制造的车身板材,还是电子设备的外壳,板材的厚度都直接关乎产品质量与性能。哪怕是微小的厚度偏差,都可能引发严重的安全隐患或使用问题。传统的板材厚度测量方法,如卡尺测量、超声波测量等,各有弊端。卡尺测量效率低、易受人为因素干扰;超声波测量则在精度和稳定性上有所欠缺,面对高精度需求时常力不从心。而激光位移传感器的出现,为板材厚度测量带来了革命性的变化。它宛如一位精准的 “测量大师”,凭借先进的激光技术,实现非接触式测量,不仅精度极高,还能快速、稳定地获取数据,有效规避了传统测量方式的诸多问题。接下来,让我们一同深入探究,两台激光位移传感器是如何默契配合,精准测量板材片材厚度的。激光位移传感器测厚原理大揭秘当谈及利用两台激光位移传感器对射安装测量板材片材厚度的原理,其实并不复杂。想象一下,在板材的上下方各精准安置一台激光位移传感器,它们如同两位目光犀利的 “卫士”,紧紧 “盯” 着板材。上方的传感器发射出一道激光束,这束激光垂直射向板材的上表面,而后经板材上表面反射回来。传感器凭借内部精密的光学系统与信号处理单元,迅速捕捉反射光的信息,并通过复杂而精准的算法,计算出传感器到板材上表面的距离,我们暂且将这个距离记为 。与此同时,下方的传感器也在同步运作。它发射的激光束射向板材的下表面,同样经过反射、捕捉与计算...
  • 6
    2025 - 01 - 14
    一、引言1.1 研究背景与意义玻璃,作为一种用途极为广泛的材料,凭借其透明、坚硬且易于加工的特性,在建筑、汽车、电子、光学仪器等众多行业中占据着举足轻重的地位。在建筑领域,玻璃不仅被广泛应用于建筑物的窗户、幕墙,以实现采光与美观的效果,还能通过巧妙设计,增强建筑的整体通透感与现代感;在汽车行业,从挡风玻璃到车窗,玻璃的质量与性能直接关系到驾乘人员的安全与视野;在电子行业,显示屏、触摸屏等关键部件更是离不开玻璃,其质量和精度对电子产品的性能和用户体验有着深远影响。在玻璃的生产、加工以及应用过程中,对其进行精确测量显得至关重要。以玻璃基板为例,这一液晶显示器件的基本部件,主要厚度为 0.7mm 及 0.5mm,且未来制程将向更薄(如 0.4mm)迈进。如此薄的厚度,却要求严格的尺寸管控,一般公差在 0.01mm。玻璃厚度的均匀性、平整度以及表面的微观形貌等参数,直接决定了玻璃在各应用场景中的性能表现。例如,汽车挡风玻璃若厚度不均匀,可能导致光线折射异常,影响驾驶员视线;电子显示屏的玻璃基板若存在平整度问题,会影响显示效果,出现亮点、暗点或色彩不均等现象。传统的玻璃测量方法,如千分尺测量、激光三角法等,虽在一定程度上能满足部分生产需求,但在精度、效率以及适用范围等方面存在诸多局限。千分尺测量属于接触式测量,容易受到人工操作的影响,导致测量误差较大,且可能对玻璃表面造成损伤;激光三角法对透...
  • 7
    2025 - 02 - 09
    1. 性能参数对比参数LTP400基恩士 LK-G400米铱 ILD1420-200测量范围±100 mm漫反射 ±100 mm200 mm(具体范围依型号)采样频率160 kHz(最高)50 kHz(对应 20 μs)8 kHz(可调)静态噪声1.5 μm(平均后)2 μm(再现性)8 μm(重复性)线性误差±0.05% F.S.(±100 μm)±160 μm光斑直径Φ300 μm(W型号更宽)ø290 μm750 x 1100 μm(末端)接口类型以太网、485、模拟输出未明确(可能基础)RS422、PROFINET、EtherCAT防护等级IP67IP67IP67重量438 g380 g(含线缆)145 g(带电缆)可定制性激光功率、蓝光版本、模拟模块无提及ASC(动态表面补偿)、多种工业接口2. LTP400 的核心优势超高采样频率(160 kHz)远超 LK-G400(50 kHz)和 ILD1420-200(8 kHz),适用于高速动态测量场景(如振动监测、快速产线检测)。优异的静态噪声与线性精度平均后静态噪声仅 1.5 μm,优于 LK-G400(2 μm)和 ILD1420-200(8 μm)。线性误差 ,显著优于 LK-G400(±100 μm)和 ILD1420-200(...
  • 8
    2023 - 09 - 20
    首先,让我们对TOF进行一次短暂的“速读”——它全称叫'time-of-flight',中文怎么说呢?风格洒脱地称之为“飞行时间”。你没听错,就是“飞行时间”。所有的颠覆与创新始于赤裸裸的想象,对吧?再来回过头,看看我们的主角TOF激光测距传感器。激光这东西,我想你肯定不陌生。科幻大片,医美广告里都被频繁提及。对这位明星,我们暂时按下暂停键, 我们聊一聊测距传感器——那可是能把复杂的三维世界,硬是证明成一串串精准数据的硬核工具。当然,他俩的组合,并不是偶然撞壁造成的火花。在“鹰眼”TOF的身上,激光变得更加酷炫,传感器技术也变得更为深邃。他们共舞的主线,就是光的飞行时间。想象一下,要在现实世界计算出光从物体发射出来,然后反射回传感器的时间。你愣了一秒,觉得好像进入了'黑洞'的领域。实则不然,TOF激光测距传感器就是这样“耳提面命”。它以光速旅行者的姿态,穿越空间,告诉我们物体与之间的距离。亲,你有听说过光速吗?大约每秒走30万公里哦,这个速度足够你在一秒钟内去绕地球七点五圈了!TOF激光测距传感器就是他们利用这么一个迅疾的光速,再加上高精度的时钟,来高效精确地计算出飞行时间并转化为距离数据。小编想说,TOF不仅玩科技,他更玩智谋,战胜了同类的超声波、红外线等测距设备。毕竟,被物的颜色、亮度、表面材质,或者环境的温湿度对他来说都不构成锁链。准确到“下毛...
Message 最新动态
泓川科技国产激光位移传感器HC16-15与进口Micro-Epsilon米铱ILD1420-10技术... 2025 - 04 - 02 以下为HC16-15国产激光位移传感器与进口ILD1420-10的对比分析报告,重点围绕技术参数、性能指标及国产替代可行性展开:一、核心参数对比指标HC16-15(泓川科技)ILD1420-10(Micro-Epsilon)测量范围±5mm(总10mm)10mm(SMR 20mm至EMR 30mm)线性度±0.1% F.S.±0.08% F.S.重复精度1μm0.5μm采样频率3000Hz(最高)4000Hz(最高)光源波长655nm(可见红光)670nm(可见红光)输出接口RS485(Modbus RTU)、0-10V/4-20mARS422、4-20mA/1-5V工作温度-10°C ~ +50°C0°C ~ +50°C防护等级IP67IP65尺寸(mm)44×31×18约47.5×14(主体)重量70g(含线缆)60g(含线缆)激光安全等级Class 2Class 2(ILD1420)/ Class 1(CL1版本)二、性能深度分析1. 精度与稳定性HC16-15:线性度±0.1% F.S.(优于多数国产传感器),1μm重复精度满足工业级需求,温度特性0.05% F.S/°C,适合宽温环境。ILD1420-10:线性度±0.08% F.S....
关于德国米铱(Micro-Epsilon)optoNCDT 1420 系列激光位移传感器的深度研究报... 2025 - 04 - 02 一、引言1.1 研究背景与意义在现代工业生产与精密测量领域,对高精度、高可靠性位移测量技术的需求与日俱增。激光位移传感器凭借其非接触测量、高精度、高响应速度以及抗干扰能力强等显著优势,已成为实现自动化生产、质量控制与精密检测的关键技术手段,广泛应用于汽车制造、电子生产、机械加工、航空航天等众多行业。optoNCDT 1420 系列激光位移传感器作为德国米铱(Micro-Epsilon)公司推出的微型化、高精度位移测量解决方案,在尺寸、性能与功能集成等方面展现出独特的优势。其紧凑的设计使其能够轻松集成到空间受限的设备与系统中,满足了现代工业对设备小型化、集成化的发展需求;同时,该系列传感器具备出色的测量精度与稳定性,可实现对微小位移变化的精确检测,为精密测量与控制提供了可靠的数据支持。深入研究 optoNCDT 1420 系列激光位移传感器的技术原理、性能特点及应用场景,对于推动激光位移测量技术的发展,拓展其在各行业的应用范围,提升工业生产的自动化水平与产品质量具有重要的理论与实际意义。通过对该系列传感器的全面剖析,能够为相关领域的工程师、技术人员提供有价值的参考依据,帮助他们更好地选择与应用激光位移传感器,解决实际工程中的测量难题。1.2 研究目标与范围本研究旨在全面深入地探究 optoNCDT 1420 系列激光位移传感器,具体目标包括:详细阐述该传感器的工作原理,深入分析其技术...
泓川科技 LTM3-030/LTM3-030W 国产激光位移传感器替代进口基恩士 IL-S025 的... 2025 - 03 - 27 1. 引言在工业自动化领域,激光位移传感器是实现高精度非接触测量的核心器件。基恩士 IL-S025 作为市场主流产品,以其 1μm 重复精度和稳定性能著称。然而,随着国产传感器技术的突破,泓川科技 LTM3-030/LTM3-030W 型号凭借更高的性能参数和经济性,为用户提供了新的选择。本文将从技术参数、性能表现、应用场景等方面,深入对比分析两者的替代可行性。 2. 核心技术参数对比参数基恩士 IL-S025泓川科技 LTM3-030/LTM3-030W对比结论重复精度1μm0.25μm(LTM3-030)/ 0.25μm(LTM3-030W)LTM3 系列更优(4 倍精度提升)线性误差±0.075% F.S.(±5mm 范围)LTM3-030W 更优(接近 IL-S025)测量范围±5mm(参考距离 25mm)±5mm(参考距离 30mm)等效采样频率3kHz(采样周期 0.33ms)10kHzLTM3 系列更优(3倍速度提升)光斑尺寸25×1200μm(线性光斑)Φ35μm(M3-030)/ Φ35×400μm(M3-030W)LTM3 系列光斑更小(点光斑更聚焦)光源类型660nm 激光(Class 2)655nm 激光(Class 2)等效接口配置需外接放大器单元(支持 EtherNet/IP 等)...
Copyright ©2005 - 2013 无锡泓川科技有限公司

1

犀牛云提供企业云服务
Our Link
X
3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 0510-88155119
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开