服务热线: 0510-88155119
13301510675@163.com
Language
项目案例 Case
Case 激光位移

激光三角-圆筒内壁圆度误差在线检测系统研究

日期: 2022-01-17
浏览次数: 99

摘要:圆筒内壁的圆度检测工作环境恶劣,检测要求严格,目前缺乏合适的解决方案。因此对其研究将促进圆筒内壁圆度误差检测的机械化自动化水平,提高产品质量,降低生产成本,加快生产速度,系统采用改进的激光三角测距法作为测量方法,既能在高温环境下工作,又可对小径圆筒进行测量。而机器视觉是用机器代替人眼来做测量和判断,测量精度高、速度快。将二者相结合,可有效解决圆筒内壁高质量、高速度的在线检测难题。

关键词:圆筒内壁检测;机器视觉;激光三角测距法

0     引言

在圆筒生产的加工过程中,本工序的前驱工序是高温钢冲压成型。由于振动磨损等原因,冲压设备在工作一段时间后会出现较大的偏差,必须对产品进行检测,发现问题后,对冲压设备进行调整。而圆筒内壁检测的传统解决方法是:冲压一批圆筒,冷却后抽样检查,不合格则本批报废,同时校正冲压设备,以便继续生产。这种传统做法采用抽样检测,如果出现废品则报废一批,存在很大的浪费,而且经过前驱工序的冲压成型,内壁表面温度高达100°C左右,必须等待产品冷却后才能检验,大大限制了生产线的工作速度;另一方面传统检测方法也不够准确、全面,故难以适应现代工业高质量生产的要求。

本系统的提出能够精确地完成圆筒的实时在线检测任务,在圆筒内壁的圆度不合格时,能够实时检测到不合格圆筒并及时报警,以便立即调整冲压设备。新检测方法既能全面检测提高了产品质量,避免更大的损失,又可加快检测速度,提高生产效率。

1     工作原理

系统采用激光测距方法,选定扫描的旋转角度和垂直间隔后,在圆筒内壁进行全扫描。因为待测目标周围环境的特殊性,现对激光三角法加以改进-由带有光路变向的激光三角检测法来进行设计。先分析激光三角法工作原理,再介绍改进的方法。

11激光三角法工作原理

激光三角法由激光器、成像透镜及光电传感器组成。激光器发出的激光投射到被测物体表面上形成漫反射光斑。将漫反射光斑作为传感信号,用透镜成像原理将收集到的反射光汇聚到成像透镜的焦平面上,此处放置光电传感器。当漫反射光斑随被测物体表面移动时,成像光点在光电传感器面上作相应的移动。根据像移距离的大小和传感器的结构参数可以确定被测物体表面的位移量,激光束如同接触测量的机械探针,可确定被测表面测点的位置。为了减小被测表面质量对测量的影响,通常采用激光束垂直入射被测物体表面的测量方式。

激光三角-圆筒内壁圆度误差在线检测系统研究

1激光三角法原理示意图

1中s为待测物体表面位移,为待测物体表面光斑在传感器上的相对位移,a为镜头到物体的物距,b为镜头到成像面的像距为观察角。由几何光学知识可求得s'与s关系如下:

激光三角-圆筒内壁圆度误差在线检测系统研究

当被测距离大于基准距离时取减号,小于基准距离时取加号。

12光路改进原理分析

由于圆筒内径的限制,可能会小到80mm左右,激光无法照射整个内壁表面;又由于圆筒温度高达100℃,激光三角测量装置不能直接伸入到圆筒内部进行检测,所以需要对传统的激光三角法检测方案进行改进。

121改进方案

(1采用反射镜反射激光,改变激光光路方向(如图2)。在检测装置底部放置45°反射镜,将平行内壁表面入射的激光光路变为垂直照射内壁表面,这样可以在圆筒外远距离垂直放置激光器。


激光三角-圆筒内壁圆度误差在线检测系统研究

2光路改进原理示意图

2)采用三棱镜作为观察装置,观察三棱镜内成像。在检测装置内部放置折射光路用的三棱镜应满足如下条件:①三棱镜摆放的位置不可挡住激光器发出的激光线;②保证三棱镜的长边与圆筒底面平行;③要使基准待测表面反射出的45°漫反射光在三棱镜边线的中点射入三棱镜,以保证测量范围。经过计算可知:当三棱镜的角度分别为25°、45°12,可以将45°出射的激光光路改变为恰好90°垂直出射,这样可以在圆筒外远距离垂直放置视觉图像采集器来采集三棱镜所成的像。

激光三角-圆筒内壁圆度误差在线检测系统研究

3机械装置工作示意图

3中的轴线为检测装置的轴线,设轴线到待测表面的距离为S。因装置中激光发射器、反射镜与三棱镜已经定位并固定,则可计算出三棱镜上边到激光线水平段的高度H、三棱镜25°角的顶点到轴线的距离W,再设轴线到射入镜头的激光线的距离为V。由几何光学知识可求得:

S=H+W+(W+V)tan25°     2

其中H、W为固定值,V为镜头中的测量值,则S可计算出。

122优点

1)将反射镜以45°放置,可使激光光路垂直于内壁表面,有效的减小激光三角法检测的误差,且便于计算。

2)检测过程中,在三棱镜内发生的两次反射都是全反射,所以,一方面在理论上不存在反射光能的损失,另一方面在光学理论上三棱镜最后所成的实像与实际物体大小相等,方向相同,只是相对距离有变化。

3)此方法可对大小不同的圆筒内壁进行检测,可检测的圆筒内壁最小直径约为80mm,装置不受圆筒高度限制,可根据圆筒的具体高度来设计系统。

4)此方法消除了传统激光三角法中由计算公式带来的非线性误差。

2     机械装置模型

机械装置部分负责在远端容纳并固定图像采集系统和激光器。在伸入端内安装反射镜和三棱镜,两端之间要能够传导光线,如图3所示。机械装置除了起到固定与定位的作用,还要保持一定的定位精度,此外机械装置部分也要保证适当的工作距离,使电路部分能够正常工作。

3     系统的图像处理

31系统的图像处理流程

1)图像采集,需要对图像传感器进行操作,实时读取数字化图像;

2)图像预处理,对采集到的图像进行一系列基本处理,为后续的处理提供简单、清楚、无噪声的图像

3)提取光斑中心,将图像上光斑的中心提取出来,完成从一幅图像到一个数据的转换;

4计算V值,将光斑中心的坐标数据转换为轴线到射入镜头的激光线的测量数据。

32图像处理工作平台的选择

由于系统要求运算精度高、速度快,所以一般的单片机无法满足需求,而高级的单片机又不够经济实用。本系统选用的是TI公司的TMS320VC5416进行嵌入式开发,54x是TI公司的一个低端系列,低能耗、高效率。而541654系列DSP(数字信号处理器)中最高端的产品,专为数字信号处理而优化,适于进行图像处理这种卷积运算任务复杂的应用环境。性能上能够满足本系统的应用需求,且成本低、易使用、外观小巧,便于嵌入系统,也便于隔温保护。

在TMS320VC5416的强大运算能力基础上,采用OV760图像传感器采集视觉图像。OV760CMOS图像传感器,体积小、重量轻、集成度高、可以直接输出数字图像信号、内含几种基本的图像处理功能、输出格式丰富。既简化了后续电路设计,又提高了图像采集质量。

将TMS320VC5416与OV760结合进行硬件设计,在空间上非常节省。因此,如果系统工作环境温度成为障碍的时候,甚至可以考虑将硬件系统隔离。

4     检测过程

圆筒在生产线传送带上运动,到达检测装置所在位置后停止,进行检测。将检测装置平行于圆筒轴线伸入圆筒内,在圆筒内壁进行全扫描。采集全部的数据点后带入式(2)中,得出相应的数据值进行分析。由于检测装置伸入时与圆筒的轴线位置会有一定的偏差,所以先将每一横截面上的数据值分别进行分析,找出每个横截面上的圆心位置,从而确定圆筒轴线位置。再分析该圆筒轴线是否与圆筒底面垂直,并分析所有检测点是否都在误差范围内。若两项都满足要求,则该圆筒合格,通知传送带继续前进,准备检查下一个圆筒;若其中有一项不合格,则该圆筒不合格,并将数据值分组对比,找出原因,通知前驱工序,调整冲压设备。

5     结束语

系统结合了光学成像、机械、图像信息处理等多个学科技术交叉融合、互相配合,并对系统中的基本激光三角法方案进行改进,成功解决了圆筒内壁圆度的实时在线检测问题。系统还应该考虑光学领域的照明工程、工程光学、光学材料等相关技术;考虑机械装置中的材料、加工、精度因素;在电子电路上,芯片、接口、电磁特性也需要研究;并结合了图像采集、图像预处理、图像光斑位置检测等图像信息处理技术。故本系统是光学、机械、电子、信息一化的检测系统,为实现圆筒内壁均匀度的在线检测提供了一种有效的途径。

论文题目:圆筒内壁圆度误差在线检测系统研究

作者:段振云,付连海,况卫平,毛波(沈阳工业大学,机械工程学院)


Case / 相关推荐
2025 - 12 - 23
点击次数: 21
摘要激光三角法测量技术凭借非接触、高精度、高效率的优势,已成为现代制造业中复杂曲面检测的核心手段。本文以LTP系列高速高精度激光三角位移传感器为研究对象,系统梳理激光三角法测量原理,深入分析复杂曲面几何特性(倾角、转角)对测量精度的影响机制,依托马晓帆硕士论文《复杂曲面激光三角法测量的精度提高技术研究》中的实验数据与误差修正模型,结合工业部署案例,论证LTP系列传感器在摆线齿轮等典型复杂曲面测量中...
2025 - 12 - 23
点击次数: 9
基于激光位移测量的动静压主轴回转精度测试技术研究——兼论泓川科技 LTP 激光位移传感器在高端装备中的工程应用价值一、引言:高端制造对主轴回转精度测试提出的新要求在高端数控机床、精密磨床以及超精密加工装备中,主轴回转精度被公认为影响零件加工质量的核心指标之一。主轴的回转精度不仅直接决定了工件的圆度、表面粗糙度和形位公差,还与加工系统的动态稳定性、加工一致性和设备可靠性密切相关。随着制造业向高精度、...
2025 - 12 - 19
点击次数: 13
核心摘要:在一段时期内,日本基恩士(KEYENCE)的LK系列特别是LK-G5000系列定义了高速激光位移传感器的行业基准。然而,随着本土传感器技术从模仿走向创新,中国厂商泓川科技(Chuantec)凭借LTP系列高速高精度激光三角位移传感器,以“技术指标在工业甜蜜区看齐”和“1/2价格的绝对优势”,正在锂电、3C、半导体及重工行业迅速确立“头部平替”的地位。本文将从光路架构、运算控制模式、详细核...
2025 - 12 - 19
点击次数: 8
——深度解构FMCW干涉式激光测距仪在长超程精密测量中的算法与数据逻辑Meta Description: 探索如何在不牺牲精度的情况下摆脱长度限制。本文深度技术解析干涉式激光测距仪利用FMCW光子集成技术,打破百米量程与1nm分辨率的物理矛盾。适用于高端半导体、精密机床与大型自动化领域。如果将工业级位置反馈传感器市场画在一张图表上,我们会看到绝大多数产品都挤在两条轴线上:一条是“短量程极高精度”(...
2025 - 12 - 17
点击次数: 8
摘要动力电池极片辊压后的厚度均匀性直接决定电池能量密度、功率密度及安全性能,微米级的厚度偏差可能导致内阻不一致、热失控风险升高。本文基于无锡泓川科技 LTP 系列激光三角位移传感器,设计一套辊压极片在线厚度实时监测系统,通过双探头对射式安装、160kHz 高速采样与温漂补偿算法,实现极片厚度 0.03μm 级重复精度测量。结合动力电池极片制造工艺需求,详细阐述系统测量原理、结构设计、实施步骤,通过...
2025 - 10 - 21
点击次数: 27
序号应用场景(多维度细化)核心需求维度项目难点推荐型号传感器优势(文档依据)选型依据(文档来源)1半导体 - 8 英寸晶圆键合线高度检测(键合线直径 20μm,金属反光)精度 0.05μm;表面金属反光;光斑≤20μm;检测距 8mm键合线微小(20μm),金属反光易导致测量偏移LTPD081. 投受光分离设计,可贴近键合区域无干扰;2. Φ20μm 小光斑精准定位线体;3. 正反射模式抑...
About Us
关于泓川科技
专业从事激光位移传感器,激光焊缝跟踪系统研发及销售的科技公司
中国 · 无锡 · 总部地址:无锡新吴区天山路6号
销售热线:0510-88155119 
图文传真:0510-88152650
Working Time
我们的工作时间
周一至周五:8:00-18:00
周六至周日:9:00-15:00
Shown 企业秀 More
  • 1
    2023 - 02 - 26
    今天我为大家展示安全激光扫描仪产品,安全激光扫描仪适用于各种应用技术领域,      在设备开发期间我们给予了特别关注,以确保它能够在广泛应用中发挥最佳功能,尤其重视大型工作区域的防护,例如机床正面区域或机器人工作区域。      其他应用包括移动车辆的防护,例如侧向滑动装置或移动运输设备,无人驾驶运输系统。甚至垂直安装激光扫描仪的出入口保护系统。尽管我们在安全激光扫描与领域,已经有数10年的经验了,但该应用领域仍然面对许多挑战。不过我们的激光安全扫描仪具有独一无二的功能属性,例如具有8.25米检测距离和270度扫描范围。       属于目前市场上的高端设备,非常适合侧向滑动装置正面区域等大型区域或长距离的防护。该设备的另一个亮点就是能够同时监测两个保护功能。这在许多应用领域中,独具优势以前需要使用两个设备,如今只需要使用一台这样的安全激光扫描仪,即可完成两台设备的功能。               实践中遇到的一项挑战是设计一款异常强骨的激光安全扫描仪。能够适应周围环境中可能存在的灰尘和颗粒等恶劣条件,因此我们提供了较分辨率达到0.1度的设备。它在目前市场上具有非常高的价值。   ...
  • 2
    2025 - 01 - 10
    一文读懂白光干涉测厚仪在工业生产、科研领域,精准测量材料厚度常常起着决定性作用。从电子设备的精细薄膜,到汽车制造的零部件,再到航空航天的关键组件,材料厚度的精准把控,直接关系到产品质量与性能。而在众多测厚技术中,白光干涉测厚仪凭借其超高精度与先进原理,脱颖而出,成为众多专业人士的得力助手。今天,就让我们一起深入了解这款神奇的仪器。原理:光学魔法精准测厚白光干涉测厚仪的核心原理,宛如一场精妙的光学魔法。仪器内部的光源发出的白光,首先经过扩束准直,让光线更加整齐有序。随后,这束光抵达分光棱镜,被巧妙地分成两束。一束光射向被测物体表面,在那里发生反射;另一束光则投向参考镜,同样被反射回来。这两路反射光如同久别重逢的老友,再次汇聚,相互干涉,形成了独特的干涉条纹。这些干涉条纹就像是大自然书写的密码,它们的明暗程度以及出现的位置,与被测物体的厚度紧密相关。当薄膜厚度发生细微变化时,光程差也随之改变,干涉条纹便会相应地舞动起来。通过专业的探测器接收这些条纹信号,并运用复杂而精准的算法进行解析,就能精确地计算出薄膜的厚度值,就如同从神秘的密码中解读出关键信息一般。打个比方,想象白光如同一场盛大的交响乐,不同波长的光如同各种乐器发出的声音。当它们在物体表面反射并干涉时,就像是乐器合奏,产生出独特的 “旋律”—— 干涉条纹。而我们的测厚仪,便是那位精通音律的大师,能从这旋律中精准听出薄膜厚度的 “音...
  • 3
    2023 - 10 - 20
    当目标物的反射率发生急剧变化时,激光位移传感器的测量稳定性会受到影响。反射率较高的目标物可能会达到光饱和状态,这会导致无法正确检测接收光光点位置,从而影响测量的稳定性。对于反射率较低的目标物,可能会因为接收到的光量不足而无法正确检测接收光光点位置,进而影响测量的稳定性。在这种情况下,激光位移传感器需要根据反射率的变化,将接收光量调整到最佳状态后,才能进行稳定的测量。具体来说,针对反射率较高的目标物,可以减小激光功率和缩短发射时间;针对反射率较低的目标物,可以增大激光功率和延长发射时间。这种方法可以帮助调整激光位移传感器的精度,以适应目标物反射率的变化。然而,调整也并非一个简单的过程,需要考虑到测量反射率急剧变化位置的稳定程度以及使用光量调整功能以外功能时的稳定程度。因此,在实际操作过程中,可能需要多次取样和调整才能获取最佳的测量效果。
  • 4
    2025 - 02 - 17
    泓川科技LTC系列光谱共焦传感器中的侧向出光探头(LTCR系列),凭借其独特的90°出光设计与紧凑结构,彻底解决了深孔、内壁、微型腔体等复杂场景的测量难题。本文深度解析LTCR系列的技术优势、核心型号对比及典型行业应用,为精密制造提供全新测量视角。一、侧向出光探头技术优势1. 空间适应性革命90°侧向出光:光路与探头轴线垂直,避免传统轴向探头因长度限制无法深入狭窄空间的问题。超薄探头设计:最小直径仅Φ3.8mm(LTCR1500N),可深入孔径≥4mm的深孔/缝隙。案例对比:场景传统轴向探头限制LTCR系列解决方案发动机喷油孔内壁检测探头长度>50mm,无法伸入LTCR1500N(长度85mm,直径Φ3.8mm)直达孔底微型轴承内圈粗糙度轴向光斑被侧壁遮挡LTCR4000侧向光斑精准照射测量面2. 精度与稳定性兼具纳米级静态噪声:LTCR1500静态噪声80nm,线性误差<±0.3μm,媲美轴向探头性能。抗振动设计:光纤与探头刚性耦合,在30m/s²振动环境下,数据波动<±0.1μm。温漂抑制:全系温漂<0.005%FS/℃,-20℃~80℃环境下无需重新校准。3. 多场景安装适配万向调节支架:支持±15°偏转角度微调,兼容非垂直安装场景。气密性封装:IP67防护等级,可直接用于切削...
  • 5
    2025 - 01 - 14
    四、关键测量技巧4.1 特殊环境测量对策4.1.1 高温环境应对在高温环境中使用激光位移传感器时,需采取有效措施以确保其正常运行和测量精度。将传感头远离热源是一种简单有效的方法。由于距离热源越近,温度越高,在不影响安装及测量精度的前提下,应优先选择可远距离测量的传感头 。在钢铁冶炼厂的高温炉旁,若需测量炉内工件的位置,可选用具有较长测量距离的激光位移传感器,将传感头安装在远离高温炉的位置,既能避免高温对传感器的直接影响,又能实现对工件的准确测量。当测量仪周边温度较规定环境温度略高时,可采用传感头用气洗方式隔热。通过向传感头周围吹拂空气,能够将热量带走,从而将温度降至规定环境温度以下。在玻璃制造车间,熔炉附近的温度较高,可在激光位移传感器的传感头处设置气洗装置,持续向传感头输送冷空气,有效降低传感头的温度,保证传感器的稳定工作。若测量仪的周边温度较高,可采用传感头用外壳或空气隔热的方法。以耐热箱包覆传感头,并向箱内输送空气,使温度控制在测量仪的环境温度范围内。在航空发动机的高温部件测试中,由于部件表面温度极高,可使用陶瓷材料制成的耐热箱将传感头包裹起来,并通过管道向箱内输送冷却空气,确保传感头在高温环境下能够正常工作 。4.1.2 强光反射环境处理在测量反射较强的镜面时,传感头的安装方式至关重要。为获取反射光,需将传感头倾斜角度设定为反射角度α的一半,角度α在激光位移传感器的尺寸上有...
  • 6
    2025 - 02 - 01
    一、背景与需求在印刷、包装、金属加工等行业中,材料(如纸张、薄膜、金属薄板等)通过传送带或滚筒输送时,常因机械振动、静电吸附或操作失误导致单张材料与双张材料重叠。若未及时检测,重叠材料可能造成设备卡顿、加工精度下降甚至产品报废。传统的检测方法(如光电传感器或机械触头)易受材料透明度、颜色或表面特性的干扰,而对射式超声波传感器凭借其非接触、高适应性及强抗干扰能力,成为解决此类问题的理想选择。二、对射超声波传感器的工作原理对射式超声波传感器由发射器和接收器组成,发射器发出高频声波(通常40kHz~200kHz),接收器检测穿透材料的声波信号。声波在穿透材料时会发生以下变化:信号衰减:单张材料厚度较薄,声波衰减较小;双张材料因厚度增加,声波能量被吸收或散射更多,接收端信号强度显著降低。飞行时间(ToF):声波穿透材料的传播时间与材料厚度正相关,双张材料会延长传播时间。通过分析接收信号的强度或传播时间差异,可精准判断材料是否为单张或双张。三、传感器选型与参数优势根据用户提供的传感器参数(HUA单双张检测系列),推荐以下型号及配置:推荐型号:HUA-18GM55-200-3E1(M18尺寸,3路PNP常开输出)关键参数:检测范围:发射器与接收器间距20-60mm,盲区7mm,适应厚度0.01mm~3mm的材料。输出类型:3路开关量输出(支持单双张状态分通道指示)。响应延时:10ms,匹配生产...
  • 7
    2023 - 03 - 07
    本次应用报告旨在介绍超声波测距传感器在锂电池生产过程中测量卷绕直径的应用情况。首先,本文将介绍超声波测距传感器的基本工作原理和特点,然后详细介绍其在锂电池生产中的应用情况,并对其应用效果进行评估和总结。一、超声波测距传感器的基本工作原理和特点超声波测距传感器是一种通过超声波测量距离的传感器,其测量原理非常简单,就是利用超声波在空气中的传播速度快,而且与环境中的温度、湿度等因素无关的特点。具体来说,超声波测距传感器通过发射超声波信号,当这些信号遇到物体时就会反射回来,传感器通过感受这些反射信号的到达时间,从而计算出物体与传感器之间的距离。超声波测距传感器具有响应速度快、距离测量范围广、测量精度高和使用方便等特点。因此,在工业自动化、机器人、汽车和航空等领域已经广泛应用。二、超声波测距传感器在锂电池生产中的应用锂电池的核心部件是电芯,而电芯的生产过程中就需要进行锂电池卷绕。卷绕的直径大小对于电芯的性能有很大的影响。因此,测量卷绕直径是电芯生产过程中非常重要的环节。传统的测量方法是利用拉尺、卡尺等工具进行物理测量,但是由于电芯内部结构复杂、精度要求高、测量效率低等因素,往往会出现误差较大的情况。超声波测距传感器可以很好地解决这个问题。具体来说,在电芯卷绕时,只需要将超声波测距传感器置于卷绕机上方,然后通过发射超声波信号测量卷绕轴的直径大小即可。由于超声波的反射信号可以穿透物体,因此不会对...
  • 8
    2025 - 01 - 14
    一、引言:解锁工业测量新 “视” 界在工业测量的广袤天地里,精度与可靠性犹如基石,支撑着生产的每一个环节。今天,我们将为您揭开 HC26 系列激光位移传感器的神秘面纱,它宛如一位精准的 “测量大师”,正悄然改变着工业测量的格局。从精密制造到智能检测,HC26 系列凭借其卓越性能,成为众多行业的得力助手。想知道它是如何做到的吗?让我们一同深入探寻。二、HC26 系列:性能优势大揭秘(一)超高集成,小巧灵活HC26 系列采用一体式机身设计,展现出令人惊叹的超高集成度 。其身形小巧玲珑,宛如工业领域的 “灵动精灵”,能够轻松适配各种复杂环境。无论是狭窄的机械内部空间,还是对安装空间要求苛刻的自动化生产线,它都能巧妙融入,为测量工作提供便利。这种紧凑的设计不仅节省了宝贵的安装空间,还简化了安装流程,大大提高了工作效率。(二)智能调光,精准测量光亮自动调节功能是 HC26 系列的一大亮点。它如同一位敏锐的观察者,能够实时感测被测表面的情况,并将激光强度精准控制到最佳状态。在面对不同材质、颜色和粗糙度的被测物体时,该功能确保了激光始终以最适宜的强度照射,从而实现稳定且精准的测量。这一特性不仅提升了测量精度,还拓宽了传感器的应用范围,使其在各种复杂工况下都能应对自如。(三)防护卓越,适应严苛具备 IP67 防护等级的 HC26 系列,犹如一位身披坚固铠甲的勇士,无惧恶劣环境的挑战。在潮湿的环境中...
Message 最新动态
蓝光光源激光位移传感器:优势、原理与特殊场景解决方案 —— 泓川科技 LTP 系列 405nm 定制... 2025 - 10 - 21 在工业精密测量中,传统红光激光位移传感器常受高反射、半透明、高温红热等特殊场景限制,而蓝光光源(405nm 波长)凭借独特物理特性实现突破。以下通过 “一问一答” 形式,详解蓝光传感器的优势、原理构造,并结合泓川科技 LTP 系列定制方案,看其如何解决特殊环境测量难题。1. 蓝光光源激光位移传感器相比传统红光,核心优势是什么?蓝光传感器的核心优势源于 405nm 波长的物理特性,相比传统 655nm 左右的红光,主要体现在三方面:更高横向分辨率:根据瑞利判据,光学分辨率与波长成反比。蓝光波长仅为红光的 62%(405nm/655nm≈0.62),相同光学系统下横向分辨率可提升约 38%,能形成更小光斑(如泓川 LTP025 蓝光版光斑最小达 Φ18μm),适配芯片针脚、晶圆等微米级结构测量。更强信号稳定性:蓝光单光子能量达 3.06eV,远高于红光的 2.05eV。在低反射率材料(如橡胶、有机涂层)表面,能激发出更强散射信号;同时穿透性更低,仅在材料表层作用,避免内部折射干扰,适合表面精准测量。更优抗干扰能力:蓝光波段与红热辐射(500nm 以上)、户外强光(可见光为主)重叠度低,搭配专用滤光片后,可有效隔绝高温物体自发光、阳光直射等干扰,这是红光难以实现的。2. 蓝光激光位移传感器的原理构造是怎样的?为何能实现高精度测量?蓝光传感器的高精度的核心是 “光学设计 + 信号处理 + ...
泓川科技国产系列光谱共焦/激光位移传感器/白光干涉测厚产品性能一览 2025 - 09 - 05 高精度测量传感器全系列:赋能精密制造,适配多元检测需求聚焦半导体、光学膜、机械加工等领域的精密检测核心痛点,我们推出全系列高性能测量传感器,覆盖 “测厚、对焦、位移” 三大核心应用场景,以 “高精准、高速度、高适配” 为设计核心,为您的工艺控制与质量检测提供可靠技术支撑。以下为各产品系列的详细介绍:1.LTS-IR 红外干涉测厚传感器:半导体材料测厚专属核心用途:专为硅、碳化硅、砷化镓等半导体材料设计,精准实现晶圆等器件的厚度测量。性能优点:精度卓越:±0.1μm 线性精度 + 2nm 重复精度,确保测量数据稳定可靠;量程适配:覆盖 10μm2mm 测厚范围,满足多数半导体材料检测需求;高效高速:40kHz 采样速度,快速捕捉厚度数据,适配在线检测节奏;灵活适配:宽范围工作距离设计,可灵活匹配不同规格的检测设备与场景。2. 分体式对焦传感器:半导体 / 面板缺陷检测的 “高速对焦助手”核心用途:针对半导体、面板领域的高精度缺陷检测场景,提供高速实时对焦支持,尤其适配显微对焦类检测设备。性能优点:对焦速度快:50kHz 高速对焦,同步匹配缺陷检测的实时性需求;对焦精度高:0.5μm 对焦精度,保障缺陷成像清晰、检测无偏差;设计灵活:分体式结构,可根据检测设备的安装空间与布局灵活调整,降低适配难度。3. LT-R 反射膜厚仪:极薄膜厚检测的 “精密管家”核心用途:专注于极薄膜...
多方面研究泓川科技LTP系列大量程全国产激光位移传感器 2025 - 09 - 02 泓川科技激光位移传感器产品技术报告尊敬的客户: 感谢您对泓川科技激光位移传感器产品的关注与信任。为帮助您全面了解我司产品,现将激光位移传感器相关技术信息从参数指标、设计原理、结构设计等八大核心维度进行详细说明,为您的选型、使用及维护提供专业参考。一、参数指标我司激光位移传感器涵盖 LTP400 系列与 LTP450 系列,各型号核心参数经纳米级高精度激光干涉仪标定验证,确保数据精准可靠,具体参数如下表所示:表 1:LTP400EA参数表参数类别具体参数LTP400EA备注基础测量参数测量中心距离400mm以量程中心位置计算(*1)量程200mm-重复精度(静态)3μm测量标准白色陶瓷样件,50kHz 无平均,取 65536 组数据均方根偏差(*2)线性度±0.03%F.S.(F.S.=200mm)采用纳米级激光干涉仪标定(*3)光源与光斑光源类型-激光功率可定制,部分型号提供 405nm 蓝光版本(*4)光束直径聚焦点光斑 Φ300μm中心位置直径,两端相对变大(*5)电气参数电源电压DC9-36V-功耗约 2.5W-短路保护反向连接保护、过电流保护-输出与通信模拟量输出(选配)电压:0-5V/010V/-1010V;电流:420mA探头可独立提供电压、电流与 RS485 输出(*6)通讯接口RS485 串口、TCP/IP 网口可选配模拟电压 / 电流输出模块(*7)响应...
Copyright ©2005 - 2013 无锡泓川科技有限公司

1

犀牛云提供企业云服务
Our Link
X
3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 0510-88155119
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开