摘要:管道是气体和液体传输的重要手段,管道内表面的检测对于工业和国防中管道泄漏事故的预防,减少环境污染和经济损失非常重要。随着电子和半导体技术的发展,光电器件逐步趋于小型化。介绍了基于激光阵列、PSD光电检测、光环截面以及结构光检测等光电检测方法的测量原理和系统构成,并在此基础上对不同光电检测方法的优缺点进行了分析和比较。分析结果表明:光电检测技术适用于管道内表面检测;并朝着快速识别缺陷、管道内表面瑕疵的精确三维测量以及三维图像直观显示管壁缺陷的方向发展。
关键词:管道内表面检测;光学三角法;光电检测;激光光源
0 引言
管道作为常用气体和液体的传输手段,已被广泛应用于石油、化工、国防及排污等领域。由于工业管道长期使用后容易发生腐蚀,而且管道内部的潜在缺陷也会发展成破损而引起泄漏事故,因此必须定期对管道内部进行检测。
用于排污和输油的管道直径通常较大,其内表面检测空间较大,对传感器的体积要求不很苛刻,且传感器的驱动相对简单。而管径范围在20mm~100mm的细管道在石油化工、能源和航空航天等领域有着广泛的应用,石油化工行业中占工艺设备总量50%以上的换热器和裂解反应器中管道直径通常小于50mm,由于细管道检测空间狭窄,目前仍然是管道内表面检测的难点。石油化工工艺设备中的细管道中流过的气体和液体长期处于高温、高压状态,且具有毒性和腐蚀性强等理化特性,长期使用后管道因腐蚀等作用可能出现裂纹等缺陷,易发生泄漏事故而引起重大的经济损失。此外国防工业中枪炮管的内径都小于几十毫米,对枪炮管进行定期检测也是保证武器装备安全运行的重要前提。因此细管道内表面的定期检测,可以预防管道事故并为合理维护提供科学依据,同时可以减少管道维修费用和环境污染,避免不必要的经济损失,因此管道检测在工业生产和国防工业中具有重要的意义。
针对排污、输油等大管径管道的内表面,其检测方法主要有超声波检测、漏磁检测以及射线法等。超声波及漏磁等检测技术通过向管道内表面发射并接收相应的反射信号,利用检测到的信号变化实现管道壁厚与瑕疵的检测[2],这些检测技术需要在管道某个截面附近多次发射和接收信号才能完成管道截面的检测,检测效率低,且对内表面的检测是间接的,不具有可见性,同时由于对噪声较敏感容易发生误检。由于管道具有封闭性,细管道内表面的检测空间狭窄,对于传感器的体积要求较为严格,因此管道内表面检测传感器的小型化一直是细管道内表面检测技术研究的一个重点。随着计算机技术和光电子技术发展而逐渐成熟的光电检测技术由于具有非接触、信息量大、自动化程度高等特点已经被国内外学者应用到管道内表面检测领域。同时伴随电子和半导体技术的发展,光电器件也逐步向小型化发展,使得光电检测技术越来越多地被用于细管道内表面检测。目前,用于管道检测的光电检测方法主要有摄像法、激光扫描法、视觉检测法和基于光电敏感器件的检测方法等。光电检测方法不仅可以直接检测到管道内表面的裂纹和瑕疵,而且可以对裂纹和瑕疵进行精确三维测量和定位。其中视觉检测技术由于具有可见性和信息量大等优点越来越受到国内外学者的重视,被广泛应用到管道内表面检测中。
1 管道内表面光电检测方法
1.1基于内窥镜的视频法
视频法管道内表面检测系统主要由1台或多台CCTV摄像机、管道爬行器以及用于增大视场的内窥镜等组成。检测时,爬行器带动摄像机在管道内行进,安装在摄像机上的内窥镜可以增大拍摄角度,拍摄到管道整个截面的内部场景。检测人员根据摄像机拍摄的管道内表面录像来判断管道内壁是否有缺陷。由于管道内部比较黑暗,视频法需要照明光源。随着半导体和电子技术的发展,视频法原来的CCTV摄像机已经被CCD(chargecoupleddevice)数字化摄像机替代,而且随着数字图像处理技术和人工智能技术的发展,开始采用计算机进行图像处理和识别来检测管道内壁的缺陷,克服了CCTV摄像机人工检测费时、人为因素干扰大的缺点。视频检测法只能判断管道内表面是否有瑕疵和裂纹等,不具有测量的功能,不能对管道内表面缺陷进行精确三维测量和定位。
1.2激光阵列法
该检测方法采用点阵形式的激光光源向管道内壁投射点阵光源,利用光学三角法进行管道内表面的三维测量[3]。激光器发射的激光经过光纤阵列后调制成矩形阵列的平面光源,如图1所示。该光源投射到管道内表面,利用CCD摄像机拍摄阵列图像,用光学三角法来进行三维重构。这种检测方法不是在一个垂直于管道轴线的截面上投射圆形光带,可是以检测管子的三维形貌,用做判断管子的形状是直线形、L形还是T形。这种检测手段传感器结构复杂,且测量精度和阵列分布与系统结构有关。
图1 激光阵列检测原理
1.3光环截面成像法
光环截面法通过向管道内表面投射激光光环,利用激光光环反射的管道内表面信息来检测裂缝和瑕疵。系统结构如图2所示,检测系统由半导体激光器、光学系统和CCD摄像机组成。激光器发出的激光被光学系统调制成宽光带的圆环,投射到管道内表面,在管内壁形成具有一定宽度的环形光带,CCD摄像机拍摄带有管道内表面信息的圆环光带,具有圆环光带的管道内表面图像被传输到计算机中,利用人工智能算法通过分析圆环图像的灰度来判断环形带内是否有裂纹等疵病。为了提高管道内壁的亮度,使得图像更清晰,检测系统设计要求环形光带越宽越好。根据瑕疵在图像中的位置,利用透视投影原理计算瑕疵在截面上的二维坐标。瑕疵在管道内的轴向位置通过三角法计算可得,图2中,L为激光器及其所投射的光环之间的距离;A为光环宽度;R为管道内半径;α1为激光器和光环左侧边缘的锥面夹角;α2为光环宽度相对于激光投射器的夹角。
当激光器中心和管道截面中心不在同一轴线上时,需根据激光器偏离轴线的距离校正瑕疵的轴向位置。光环截面法检测要求光环越宽越好,但随着光环宽度增加,瑕疵的轴向定位精度随之降低。
图2 光环截面法检测管道内表面
1.4圆结构光视觉检测法
圆结构光检测方法是一种主动视觉检测方法,和光环截面法不同,圆环结构光视觉检测利用调制的光条信息通过光学三角法来恢复三维信息,因此光条越窄测量精度越高。结构光视觉检测原理如图3所示,结构光源发射出的光平面投射到三维物体上,交线为含有三维物体形状信息的明亮的光条,对应在摄像机拍摄的图像上有相应的光条。假设C为投射在三维物体上光条的任一点,结构光源坐标系原点为A,摄像机坐标系原点为B,结构光与摄像机之间的距离为b,测量时被测物、结构光源和摄像机三者的相互位置关系固定,即W,h,b为已知参量,则在ΔABC中,利用三角关系可以唯一确定C点的三维位置。
图3 结构光视觉测量原理
圆结构光测量系统结构如图4所示,和通常采用横向排列方式的结构光视觉测量系统不同,CCD摄像机和圆结构光投射器采用径向排列方式,径向结构可以有效减小传感器的体积,适于小管径管道内表面的测量。圆结构光投射器由半导体激光器和一个锥面反射镜组成,激光器发射的光到达锥面反射镜上,经锥面镜反射形成均匀的圆光条反射到管道内壁。测量时半导体激光器和CCD摄像机固定不动,被测物体被固定在一维移动设备上沿管道轴线方向移动。摄像机拍摄带有管道内表面三维信息的圆光条图像,在对圆锥光平面、摄像机及其激光器之间位置关系标定后即可测量管道内表面精确的三维信息。
图4 圆结构光检测系统
1.5基于位置敏感器(PSD)的检测方法
基于位置敏感器的内表面检测方法利用激光三角法和光学扫描原理实现三维测量。位置敏感器(positionsensitivedevice)是一种侧向效应硅光电器件,当入射光照射到二维PSD光敏面上时,PSD会产生4路电流,利用4路电流和光敏面中心的关系可以确定入射光点在光敏面上的位置,进一步通过光学三角法确定空间点的三维坐标。PSD具有响应速度快、可连续采样、信号处理相对简单等特点。基于PSD的内表面检测系统如图5所示,主要由激光光源、反射镜、透明窗、旋转平面镜、透镜和PSD组成。激光光源发出的光束经反射镜反射后,在管道内壁上形成微小光点D,该光点由透镜接收后在PSD光敏面上得到像点N,点D和点N到检测器中轴线的距离分别为R和r,扫描反射镜的偏转角为U,透镜主面间距为d,B为激光束和扫描反射镜面的交点,B′是B关于带孔发射镜面的对称点,L表示点B′到PSD光敏面的距离,f为透镜组左主面到PSD光敏面的距离。根据光学三角关系,可以求得管道内壁点D到检测器中轴线的距离R。扫描反射镜绕管道中轴线旋转360°,即可实现管道内壁截面的三维检测。由于透明窗引起的光线折射会产生偏差,在计算时需要修正由于折射引起的偏差。如果管道内表面没有缺陷,则该截面对应的R值相等;如果有缺陷,则R值会发生变化。
图5 基于PSD的检测系统及原理
2 管道内表面光电检测方法的比较和分析
视频法、光环截面法、基于PSD的检测方法以及圆结构光视觉检测法都能实现细管道内表面的检测,和其他管道检测方法相比,具有可见性且检测效率高的特点。视频法检测获取的信息量大,但是早期视频法采用人工方法判断瑕疵,非常耗时且容易受到人为因素的干扰。随着数字图像处理技术和计算机技术的发展,视频法检测技术向如何获取清晰的管道内表面二维图像以及如何根据二维图像信息提高对瑕疵、裂纹等缺陷判断的速度和准确率的方向发展。但视频检测法没有量化测量的能力,不能实现管道内壁三维形貌的精确测量,对于需要进行预测估计的管道瑕疵,它无法提供高精度的三维数据。
光环截面法利用拍摄图像中圆光环灰度的异常来判断瑕疵,光环可以为封闭管道提供较好的照明,增加了图像的清晰度。光环截面法利用人工智能技术分析,根据获取的图像灰度信息来判断管道内表面是否有裂纹等疵病。管道内表面的测量精度和投射的圆环宽度有关,且相邻位置的圆环光带容易发生信息重叠。和视频法相比光环截面法可以对瑕疵进行较为准确的定位,但该方法要求视觉传感器的轴线和管道轴线同轴,对测量系统的装配和测量环境要求高,其对瑕疵和缺陷的定位精度与激光投射器和管道轴线同轴度有关。
激光阵列法和基于位置敏感器的检测方法利用光学三角法和扫描原理实现管内壁任意点的精确三维测量,但对于管道某个内壁截面的测量需要机械或者光学扫描装置进行多次采集数据才能实现。因此这两种方法系统结构较为复杂,一次数据采集量小且基于位置敏感器的检测方法由于传感器自身遮挡对于管道内表面存在测量盲区。
基于圆结构光的检测方法是随着计算机技术和电子技术的发展而发展起来的新型光电检测方法,该方法由摄像机拍摄管道内表面结构信息的圆结构光条,利用精确标定的三维数学模型实现管道内表面高精度的三维测量。和其他光电检测方法相比,圆结构光检测方法可以实现精确的三维测量,系统结构简单,且对系统安装要求不高,适用性较强。
3 结论和展望
由于光电检测技术具有非接触和测量速度快的特点,目前已被广泛用于管道内表面检测。基于摄像机的视频法只能实现管道内表面的二维检测,而光环截面法不仅能判断内表面的瑕疵和缺陷,并能对瑕疵进行定位。基于位置敏感器的检测方法只能实现管道内任意一点精确的三维测量,需要多次扫描才能实现一个截面的测量。圆环结构光视觉检测方法可以利用三维重构数学模型对管道内表面进行精确的三维测量,测量效率和精度都比较高。目前管道检测技术正朝着快速诊断、分析、识别缺陷,对管道内表面瑕疵进行精确三维测量以及三维图像直观显示管壁缺陷的方向发展。因此,针对管道内表面的光电检测技术也必然向着精确三维测量和快速恢复三维形貌的方向发展。结构光视觉检测技术作为高精度三维测量的新兴检测技术适应管道内表面检测的发展方向。
论文题目:细管道内表面光电检测方法研究
作者:王颖,王建林(北京化工大学,信息科学与技术学院)