服务热线: 0510-88155119
13301510675@163.com
Language
项目案例 Case
Case 激光位移

激光三角-细管道内表面光电检测方法研究

日期: 2022-01-14
浏览次数: 96

摘要:管道是气体和液体传输的重要手段,管道内表面的检测对于工业和国防中管道泄漏事故的预防,减少环境污染和经济损失非常重要。随着电子和半导体技术的发展,光电器件逐步趋于小型化。介绍了基于激光阵列、PSD光电检测、光环截面以及结构光检测等光电检测方法的测量原理和系统构成,并在此基础上对不同光电检测方法的优缺点进行了分析和比较。分析结果表明:光电检测技术适用于管道内表面检测;并朝着快速识别缺陷、管道内表面瑕疵的精确三维测量以及三维图像直观显示管壁缺陷的方向发展。

关键词:管道内表面检测;光学三角法;光电检测;激光光源

0 引言

管道作为常用气体和液体的传输手段,已被广泛应用于石油、化工、国防及排污等领域。由于工业管道长期使用后容易发生腐蚀,而且管道内部的潜在缺陷也会发展成破损而引起泄漏事故,因此必须定期对管道内部进行检测。

用于排污和输油的管道直径通常较大,其内表面检测空间较大,对传感器的体积要求不很苛刻,且传感器的驱动相对简单。而管径范围在20mm100mm的细管道在石油化工、能源和航空航天等领域有着广泛的应用,石油化工行业中占工艺设备总量50%以上的换热器和裂解反应器中管道直径通常小于50mm,由于细管道检测空间狭窄,目前仍然是管道内表面检测的难点。石油化工工艺设备中的细管道中流过的气体和液体长期处于高温、高压状态,且具有毒性和腐蚀性强等理化特性,长期使用后管道因腐蚀等作用可能出现裂纹等缺陷,易发生泄漏事故而引起重大的经济损失。此外国防工业中枪炮管的内径都小于几十毫米,对枪炮管进行定期检测也是保证武器装备安全运行的重要前提。因此细管道内表面的定期检测,可以预防管道事故并为合理维护提供科学依据,同时可以减少管道维修费用和环境污染,避免不必要的经济损失,因此管道检测在工业生产和国防工业中具有重要的意义。

针对排污、输油等大管径管道的内表面,其检测方法主要有超声波检测、漏磁检测以及射线法等。超声波及漏磁等检测技术通过向管道内表面发射并接收相应的反射信号,利用检测到的信号变化实现管道壁厚与瑕疵的检测[2],这些检测技术需要在管道某个截面附近多次发射和接收信号才能完成管道截面的检测,检测效率低,且对内表面的检测是间接的,不具有可见性,同时由于对噪声较敏感容易发生误检。由于管道具有封闭性,细管道内表面的检测空间狭窄,对于传感器的体积要求较为严格,因此管道内表面检测传感器的小型化一直是细管道内表面检测技术研究的一个重点。随着计算机技术和光电子技术发展而逐渐成熟的光电检测技术由于具有非接触、信息量大、自动化程度高等特点已经被国内外学者应用到管道内表面检测领域。同时伴随电子和半导体技术的发展,光电器件也逐步向小型化发展,使得光电检测技术越来越多地被用于细管道内表面检测。目前,用于管道检测的光电检测方法主要有摄像法、激光扫描法、视觉检测法和基于光电敏感器件的检测方法等。光电检测方法不仅可以直接检测到管道内表面的裂纹和瑕疵,而且可以对裂纹和瑕疵进行精确三维测量和定位。其中视觉检测技术由于具有可见性和信息量大等优点越来越受到国内外学者的重视,被广泛应用到管道内表面检测中。

1     管道内表面光电检测方法

1.1基于内窥镜的视频法

视频法管道内表面检测系统主要由1台或多台CCTV摄像机、管道爬行器以及用于增大视场的内窥镜等组成。检测时,爬行器带动摄像机在管道内行进,安装在摄像机上的内窥镜可以增大拍摄角度,拍摄到管道整个截面的内部场景。检测人员根据摄像机拍摄的管道内表面录像来判断管道内壁是否有缺陷。由于管道内部比较黑暗,视频法需要照明光源。随着半导体和电子技术的发展,视频法原来的CCTV摄像机已经被CCD(chargecoupleddevice)数字化摄像机替代,而且随着数字图像处理技术和人工智能技术的发展,开始采用计算机进行图像处理和识别来检测管道内壁的缺陷,克服了CCTV摄像机人工检测费时、人为因素干扰大的缺点。视频检测法只能判断管道内表面是否有瑕疵和裂纹等,不具有测量的功能,不能对管道内表面缺陷进行精确三维测量和定位。

1.2激光阵列法

该检测方法采用点阵形式的激光光源向管道内壁投射点阵光源,利用光学三角法进行管道内表面的三维测量[3]。激光器发射的激光经过光纤阵列后调制成矩形阵列的平面光源,如图1所示。该光源投射到管道内表面,利用CCD摄像机拍摄阵列图像,用光学三角法来进行三维重构。这种检测方法不是在一个垂直于管道轴线的截面上投射圆形光带,可是以检测管子的三维形貌,用做判断管子的形状是直线形、L形还是T形。这种检测手段传感器结构复杂,且测量精度和阵列分布与系统结构有关。


激光三角-细管道内表面光电检测方法研究

1 激光阵列检测原理

1.3光环截面成像法

光环截面法通过向管道内表面投射激光光环,利用激光光环反射的管道内表面信息来检测裂缝和瑕疵。系统结构如图2所示,检测系统由半导体激光器、光学系统和CCD摄像机组成。激光器发出的激光被光学系统调制成宽光带的圆环,投射到管道内表面,在管内壁形成具有一定宽度的环形光带,CCD摄像机拍摄带有管道内表面信息的圆环光带,具有圆环光带的管道内表面图像被传输到计算机中,利用人工智能算法通过分析圆环图像的灰度来判断环形带内是否有裂纹等疵病。为了提高管道内壁的亮度,使得图像更清晰,检测系统设计要求环形光带越宽越好。根据瑕疵在图像中的位置,利用透视投影原理计算瑕疵在截面上的二维坐标。瑕疵在管道内的轴向位置通过三角法计算可得,2,L为激光器及其所投射的光环之间的距离;A为光环宽度;R为管道内半径;α1为激光器和光环左侧边缘的锥面夹角;α2为光环宽度相对于激光投射器的夹角。

当激光器中心和管道截面中心不在同一轴线上时,需根据激光器偏离轴线的距离校正瑕疵的轴向位置。光环截面法检测要求光环越宽越好,但随着光环宽度增加,瑕疵的轴向定位精度随之降低。

激光三角-细管道内表面光电检测方法研究

2 光环截面法检测管道内表面

1.4圆结构光视觉检测法

圆结构光检测方法是一种主动视觉检测方法,和光环截面法不同,圆环结构光视觉检测利用调制的光条信息通过光学三角法来恢复三维信息,因此光条越窄测量精度越高。结构光视觉检测原理如图3所示,结构光源发射出的光平面投射到三维物体上,交线为含有三维物体形状信息的明亮的光条,对应在摄像机拍摄的图像上有相应的光条。假设C为投射在三维物体上光条的任一点,结构光源坐标系原点为A,摄像机坐标系原点为B,结构光与摄像机之间的距离为b,测量时被测物、结构光源和摄像机三者的相互位置关系固定,W,h,b为已知参量,则在ΔABC,利用三角关系可以唯一确定C点的三维位置。


激光三角-细管道内表面光电检测方法研究

3 结构光视觉测量原理

圆结构光测量系统结构如图4所示,和通常采用横向排列方式的结构光视觉测量系统不同,CCD摄像机和圆结构光投射器采用径向排列方式,径向结构可以有效减小传感器的体积,适于小管径管道内表面的测量。圆结构光投射器由半导体激光器和一个锥面反射镜组成,激光器发射的光到达锥面反射镜上,经锥面镜反射形成均匀的圆光条反射到管道内壁。测量时半导体激光器和CCD摄像机固定不动,被测物体被固定在一维移动设备上沿管道轴线方向移动。摄像机拍摄带有管道内表面三维信息的圆光条图像,在对圆锥光平面、摄像机及其激光器之间位置关系标定后即可测量管道内表面精确的三维信息。

激光三角-细管道内表面光电检测方法研究

4 圆结构光检测系统

1.5基于位置敏感器(PSD)的检测方法

基于位置敏感器的内表面检测方法利用激光三角法和光学扫描原理实现三维测量。位置敏感器(positionsensitivedevice)是一种侧向效应硅光电器件,当入射光照射到二维PSD光敏面上时,PSD会产生4路电流,利用4路电流和光敏面中心的关系可以确定入射光点在光敏面上的位置,进一步通过光学三角法确定空间点的三维坐标。PSD具有响应速度快、可连续采样、信号处理相对简单等特点。基于PSD的内表面检测系统如图5所示,主要由激光光源、反射镜、透明窗、旋转平面镜、透镜和PSD组成。激光光源发出的光束经反射镜反射后,在管道内壁上形成微小光点D,该光点由透镜接收后在PSD光敏面上得到像点N,D和点N到检测器中轴线的距离分别为Rr,扫描反射镜的偏转角为U,透镜主面间距为d,B为激光束和扫描反射镜面的交点,B′B关于带孔发射镜面的对称点,L表示点B′PSD光敏面的距离,f为透镜组左主面到PSD光敏面的距离。根据光学三角关系,可以求得管道内壁点D到检测器中轴线的距离R。扫描反射镜绕管道中轴线旋转360°,即可实现管道内壁截面的三维检测。由于透明窗引起的光线折射会产生偏差,在计算时需要修正由于折射引起的偏差。如果管道内表面没有缺陷,则该截面对应的R值相等;如果有缺陷,R值会发生变化。

激光三角-细管道内表面光电检测方法研究

5 基于PSD的检测系统及原理

2     管道内表面光电检测方法的比较和分析

视频法、光环截面法、基于PSD的检测方法以及圆结构光视觉检测法都能实现细管道内表面的检测,和其他管道检测方法相比,具有可见性且检测效率高的特点。视频法检测获取的信息量大,但是早期视频法采用人工方法判断瑕疵,非常耗时且容易受到人为因素的干扰。随着数字图像处理技术和计算机技术的发展,视频法检测技术向如何获取清晰的管道内表面二维图像以及如何根据二维图像信息提高对瑕疵、裂纹等缺陷判断的速度和准确率的方向发展。但视频检测法没有量化测量的能力,不能实现管道内壁三维形貌的精确测量,对于需要进行预测估计的管道瑕疵,它无法提供高精度的三维数据。

光环截面法利用拍摄图像中圆光环灰度的异常来判断瑕疵,光环可以为封闭管道提供较好的照明,增加了图像的清晰度。光环截面法利用人工智能技术分析,根据获取的图像灰度信息来判断管道内表面是否有裂纹等疵病。管道内表面的测量精度和投射的圆环宽度有关,且相邻位置的圆环光带容易发生信息重叠。和视频法相比光环截面法可以对瑕疵进行较为准确的定位,但该方法要求视觉传感器的轴线和管道轴线同轴,对测量系统的装配和测量环境要求高,其对瑕疵和缺陷的定位精度与激光投射器和管道轴线同轴度有关。

激光阵列法和基于位置敏感器的检测方法利用光学三角法和扫描原理实现管内壁任意点的精确三维测量,但对于管道某个内壁截面的测量需要机械或者光学扫描装置进行多次采集数据才能实现。因此这两种方法系统结构较为复杂,一次数据采集量小且基于位置敏感器的检测方法由于传感器自身遮挡对于管道内表面存在测量盲区。

基于圆结构光的检测方法是随着计算机技术和电子技术的发展而发展起来的新型光电检测方法,该方法由摄像机拍摄管道内表面结构信息的圆结构光条,利用精确标定的三维数学模型实现管道内表面高精度的三维测量。和其他光电检测方法相比,圆结构光检测方法可以实现精确的三维测量,系统结构简单,且对系统安装要求不高,适用性较强。

3     结论和展望

由于光电检测技术具有非接触和测量速度快的特点,目前已被广泛用于管道内表面检测。基于摄像机的视频法只能实现管道内表面的二维检测,而光环截面法不仅能判断内表面的瑕疵和缺陷,并能对瑕疵进行定位。基于位置敏感器的检测方法只能实现管道内任意一点精确的三维测量,需要多次扫描才能实现一个截面的测量。圆环结构光视觉检测方法可以利用三维重构数学模型对管道内表面进行精确的三维测量,测量效率和精度都比较高。目前管道检测技术正朝着快速诊断、分析、识别缺陷,对管道内表面瑕疵进行精确三维测量以及三维图像直观显示管壁缺陷的方向发展。因此,针对管道内表面的光电检测技术也必然向着精确三维测量和快速恢复三维形貌的方向发展。结构光视觉检测技术作为高精度三维测量的新兴检测技术适应管道内表面检测的发展方向。

论文题目:细管道内表面光电检测方法研究

作者:王颖,王建林(北京化工大学,信息科学与技术学院)


Case / 相关推荐
2024 - 11 - 18
点击次数: 2
在现代汽车制造业中,车顶与车身纵梁的结合位置精度直接关系到车辆的密封性、安全性和整体美观。为了确保这一关键装配过程的精确性,采用先进的3D线激光位移传感器,如HL-8040型号,已成为行业内的优选方案。本文将深入探讨该传感器在测量车顶与纵梁结合位置时的技术原理、测量步骤及其高精度实现的细节。一、技术背景与传感器参数HL-8040型3D线激光位移传感器以其卓越的性能参数,为实现高精度测量提供了坚实基...
2024 - 11 - 18
点击次数: 0
在现代汽车制造过程中,车体高度测量是一项至关重要的任务。它不仅影响车辆的外观和性能,还直接关系到车辆的整体质量和安全。传统的人工测量方法不仅效率低下,而且精度难以保证,因此,采用先进的激光位移传感器进行自动测量成为了一种有效的解决方案。本文将详细阐述如何使用LTP1000系列高速激光位移计在1米距离内精确测量车体高度,并反馈至研磨机械手的仿形控制,实现高精度、高效率和稳定的测量。技术背景LTP10...
2024 - 11 - 17
点击次数: 3
在现代自动化生产线上,托盘作为物料搬运和存储的基本单元,其数量的准确统计对于生产效率、库存管理及成本控制至关重要。然而,当托盘紧密对接、快速流动于高速流水线上时,传统计数方法往往难以胜任。本文将深入探讨一种基于高速激光位移传感器的创新解决方案,该方案通过精确捕捉托盘堆叠侧面的高度变化,实现了在高速环境下的托盘精确计数,为工业生产带来了革命性的改变。一、技术背景与挑战在快节奏的生产环境中,托盘以惊人...
2024 - 10 - 21
点击次数: 16
引言 在现代精密制造、自动化检测及科学研究领域,对位移与距离的精确测量需求日益增长,尤其是当测量精度要求达到微米甚至亚微米级别时,传统的测量方法往往难以满足要求。近年来,基于调频连续波(Frequency Modulated Continuous Wave, FMCW)技术的激光位移/测距传感器因其高精度、抗干扰性强等特点,逐渐成为高精度测量领域的研究热点。本文将详细介绍一款采用FMC...
2024 - 10 - 11
点击次数: 28
摘要:在光伏硅片制造过程中,确保硅片具有均匀一致的厚度是提升产量、降低废品率及控制成本的关键。本文介绍了一种基于大光斑高精度激光位移传感器的硅片厚度测量方法,通过两台传感器对射测量,有效消除了硅片表面粗糙度对测量精度的影响,实现了硅片厚度的精确测量。一、引言光伏硅片作为太阳能电池的核心组件,其厚度的一致性直接影响到太阳能电池的性能和制造成本。传统的硅片厚度测量方法往往受到硅片表面粗糙度的影响,导致...
2024 - 10 - 11
点击次数: 18
摘要:在液晶显示面板的生产过程中,玻璃基板的平整度和重叠度是决定产品质量的关键因素。本文介绍了一种基于激光位移传感器的测量方法,该方法通过精确测量玻璃基板的厚度及重叠状态,有效提升了装载过程的精确性和效率,降低了损坏风险。一、引言液晶显示面板(LCD)作为现代电子设备的重要组成部分,其性能直接受到玻璃基板质量的影响。玻璃基板的平整度、重叠度等参数对LCD的分辨率、透光度、厚度、整体质量及视角等特性...
About Us
关于泓川科技
专业从事激光位移传感器,激光焊缝跟踪系统研发及销售的科技公司
中国 · 无锡 · 总部地址:无锡新吴区天山路6号
销售热线:0510-88155119 
图文传真:0510-88152650
Working Time
我们的工作时间
周一至周五:8:00-18:00
周六至周日:9:00-15:00
Shown 企业秀 More
  • 1
    2022 - 12 - 05
    今天我们讨论的是条码阅读器的性能冗余,高性能条码阅读器有哪些优势呢?有时在使用中条码阅读器在调试时。不能很好的对准。或者条码阅读器在使用一段时间后出现故障和校准错误。纸箱和包裹也可能出现大幅度变形或者倾斜。或者定义范围不合适。或者超出质量标准,甚至有时还会达到,没有达到标准的class a,条码标准。例如条码印刷不清晰或者褪色。在所有的这种条件情况下,我们的条码阅读器的性能冗余就派上用场了。       条码阅读器达到参数限制时。通常需要性的目的,也就是说即使阅读条件不在标准范围内,足够高的读取质量也能解决这个问题。即使在极端条件下,我们专门开发的光学和模拟电子装置也能可靠读取条码信息。我给大家演示一下,在这个简单的装置中,条码阅读器通过以太网连接到PC,可以使用web对口激活调节模式,然后通过图表显示质量,如果条码印刷质量较好,清洁角度高达±30度,也能保证实现可靠性,但您可以看到我们产品的检测范围远远超过低级的限制。我们将这个产品功能,称为性能荣誉,该功能可以实现非常高的录取质量和应用可靠性。您在应用中遇到哪些问题呢?请联系我们。
  • 2
    2024 - 01 - 21
    光谱共焦位移传感器是一种利用光谱干涉测量物体位移和形变的高精度测量设备。为了确保测量的准确性和稳定性,暗校准(DARK)操作的执行及其有效掌握是至关重要的。首先,我们需要明确什么时候需要进行暗校准。主要场景包括系统重新连接、环境温度变动10℃以上以及传感器图像出现异常跳动起伏等情况。对于这些情况,都建议重新进行暗校准操作,以修正任何可能的误差。暗校准操作的具体流程如下:1. 清洁光纤:在开始进行暗校准之前,务必要清洁光纤端,以消除灰尘和油脂的干扰。这是因为这些杂质会反射光线,增加背景光的影响。2. 插牢光纤:正确并且稳固地连接光纤,避免由于连接处的反射,导致背景光的增强。3. 遮挡**:在执行暗校准时,需要使用深色物体对**进行完全遮挡,避免环境光的干扰。如果环境没有强光源,只需将被测物体移出测量范围,就可以进行暗校准。4. 执行暗校准:完成上述流程后,便可进行暗校准操作。若暗校准效果不理想,需要重新检查并确保光纤清洁和连接正常。5. 温度变化时重新暗校准:由于环境温度的改变可能影响光源的亮度,因此当温度变化超过10℃时,应重新进行暗校准,以保证准确性。除此之外,某些厂商如立仪、基恩士及普雷茨特Mini型等采用了优化设计,通过将耦合器外置或使用棱镜耦合器以及收发光纤分离的方案,能有效降低接口污染对背景光的影响,提升传感器性能和稳定性。总的来说,暗校准是光谱共焦位移传感器获取准确稳定...
  • 3
    2023 - 12 - 08
    随着科技的不断发展和进步,传感器技术得到了广泛的应用,尤其是在音响设备的振动频率测量方面。为了解决传统多普勒激光振动测量仪在成本上的投入问题,我们引入了一种低成本且高精度的解决方案--我们的高精度高速激光位移传感器LTP080系列。LTP080系列是一款卓越的激光位移传感器,它具有最高160K赫兹的采样频率,可以轻松处理100赫兹以下的低频振动测量。这使得它非常适合在音响设备的振动频率测量中使用。首先,必须将激光位移传感器准确地定位在音响设备的振动部分。然后,启动传感器进行数据采集。传感器将会收集音响设备振动的位移数据,这些数据通过微积分运算计算得出速度信息。然后,再对速度数据进行二次微积分运算,便可获取加速度信息。这样,我们便可以通过经济的方式获得音响设备的振动速度和加速度信息,无需购买昂贵的多普勒激光振动测量仪。值得注意的是,这种测量方式并不完美。它需要通过数学运算将位移数据转换为速度和加速度信息,并且对于高频振动测量可能存在局限性。然而,正是这种方法的低成本和高精度特性,使其在音响设备振动频率测量方面发挥了非凡的作用。此外,激光位移传感器还有其他一些优点,例如强大的抗干扰能力,可以适应各种环境条件,包括高温、低温、湿热等环境,以及不受照射材料、颜色及表面粗糙度的影响等。总的来说,LTP080系列高速激光位移传感器在音响设备的振动频率测量中的应用,提供了一种经济实惠且准确的解决...
  • 4
    2022 - 12 - 05
    今天我们来讲一下电容式传感器的原理,首先什么是电容传感器呢?电容传感器主要是一种开关传感器,可以检测活动区附近的材料因为这些材料会影响电场。现在您可以通过一些简短的动画进行了解。电容式传感器的主要优势,他们完全不受材料的颜色,表面特性的影响。在某些条件下甚至可以透壁检测。并且对空气中的污染物不灵敏,例如灰尘,另外重要的一点是,他们工作是完全不受任何类型背景光的影响。那么在使用电容式传感器时应该考虑哪些方面呢?       首先要考虑的是所检测物体的湿度或者尺寸可能发生变化。还需要考虑一些典型的开关频率。当然您还需要关注激光位移传感器之间的距离。最重要的一点是激光位移传感器开关距离以及特定材料的绝缘常量。关于电容式传感器,我们还需要来了解哪些其他方面呢?它有三个主要的应用领域,首先是容量控制,这里可以看到一个简单的图片,也是包装行业的一个事例,图中的两个传感器底部和顶部各有一个。       可用于检测罐装高度的高位和低位,从而开始和停止估计流程,另外一个主要应用领域是内装物控制在这个图片里,你可以看到典型的就是检测牛奶或者一些食品的人,物体内部包装的产品的容量,检测各个包装中是否存在冲突,这里电容式传感器的用处是最后一个应用是主要应用在状态控制,图中的只是可以看到这里是通过太阳能行业的一个示例,来了解电...
  • 5
    2024 - 01 - 21
    保障桥梁的安全运行与结构稳定性是城市交通安全的重要链接,而高精度激光位移传感器正是完成此项任务的关键装备之一。在桥梁结构监测中,它们凭借其非接触式高精度测量原理,对桥梁的位移、变形、振动等关键参数进行实时监测,为桥梁健康管理提供重要依据。首先,在桥梁的挠度和变形监测中,激光位移传感器扮演着非常重要的角色。通过将传感器安装在结构的关键位置,可以实时地观察并记录桥梁的挠度、沉降和扭曲等变化情况,这些数据能够提供对桥梁健康状况的即时反馈,帮助维修人员及时发现并对异常变形现象进行处理。其次,激光位移传感器还能作为振动监测工具,为桥梁的刚度和自然频率评估提供重要依据。该传感器通过测量桥梁的振频、振型和振幅等参数,可以生成宝贵的结构振动数据。在桥梁出现异常振动现象时,它们可以实时检测并发出预警信号,为桥梁维护人员提供对策指引,确保桥梁的安全使用。最后,激光位移传感器在桥梁结构损伤检测与诊断中也展现出重要的价值。通过对激光位移传感器采集到的振动信号进行分析,可以提取出桥梁的频率响应函数和模态特征等关键信息。进一步地,这些特征可以与桥梁设计时的标准特征进行对比,以检测桥梁是否存在损伤或疲劳等问题。这也使得激光位移传感器能够在桥梁微小的结构变化初始阶段就进行预警和诊断,从而帮助维护人员采取及时的维修或加固措施,有效延长桥梁的使用寿命。总体来看,高精度激光位移传感器在桥梁结构监控中起关键作用。无论是挠...
  • 6
    2020 - 09 - 14
    现如今在很多的行业里面都离不开激光位移传感器的应用,因为这种特殊激光位移传感器特点‍是能够对长度以及方位等来进行高精度的准确测量,而且用起来简便且很耐用所以受到了无数用户们的认可。而面对市场上众多的激光位移传感器品牌用户们究竟该怎么去选择呢?一、根据需要测量的目标结构与材质进行选择激光位移传感器虽然有着强大的测量功能,但是对于测量的目标结构与材质也是有着相应的需求的,因为激光位移传感器的测量过程是需要一个完整三角光路的,如果被测量目标的表面凹入不平就会造成三角光路无法形成,这样的话自然也就无法顺利的得到测量数据了。如果被测量目标的表面吸光这样也是无法形成完整三角光路进而无法完成测量工作的,因此用户们在选择激光位移传感器产品之时应着重考虑到这些问题才行。二、根据参数指标的实际要求进行选择激光位移传感器如今在制造业内有着很多的应用特别是对电子行业更是如此,而在选择这种产品时也应当根据具体所需的参数指标的来进行针对性选择才行。事实上这里所说的参数及指包含的面比较广比如说分辨率还有测量的速率等,因为对零部件生产的要求越是精密那么对它的要求也自然要更高也只有这样才能生产制造出真正的好产品。虽然激光位移传感器功能众多在生产过程当中的重要性是很明显的,但是在选择激光位移传感器的时候还是不能盲目应当遵循着上述这两个方面的原则,只有这样才能在众多的激光位移传感器品牌当中顺利地找到更能够满足自身实际需...
  • 7
    2023 - 12 - 08
    现代科技日新月异的发展,为我们带来了种种便利。光伏产业就是其中的一员。压延玻璃作为光伏电池板的关键材料,其厚度的精确控制直接影响到电池板性能。然而,传统的手动检测方法难以满足高精度测量的需要,光谱共焦传感器的出现彻底改变了这一问题。光谱共焦传感器,顾名思义,它利用光谱学原理和共焦技术,实现对物体的高精度,迅速,无损检测。在压延玻璃的生产过程中,我们可以使用它进行厚度的实时监测。具体步骤如下:首先,我们应该注意的是,由于压延玻璃两面的表面状态不同,一面平整光滑,另外一面则是由无数微小的半球面拼接而成。因此,在进行光学测量时,我们需要遵循激光的透光原理,从平整表面那一侧打光。这样做可以确保我们获得的数据稳定而准确。其次,由于压延玻璃在生产过程中可能会出现轻微的抖动,因此,我们需要选择具有较大测量范围的光谱共焦传感器,以弥补生产过程中的这种不确定性。一般来说,压延玻璃的厚度在2-3.5mm之间,因此我们尽量选用量程大于8mm的传感器。最后,光谱共焦传感器具有良好的穿透性能和大角度检测能力。我们可以通过检测透明物体的正反两面,以此来获取压延玻璃的厚度值。同时,由于其可以进行大角度测量,所以,即使玻璃表面存在凹凸不平的情况,也能得出稳定、准确的测量结果。本案例给我们展示了科技与生产的完美结合,使得生产过程更加精细,更加高效。我们有理由相信,随着科技的不断进步,未来生产出的光伏压延玻璃将更加完...
  • 8
    2024 - 11 - 20
    在当今精密制造与检测领域,对微小尺寸变化的精确测量需求日益增长。特别是在半导体制造、微纳加工、光学元件检测等高端应用中,对测量误差的严格要求往往达到纳米级。面对这一挑战,国内自主研发的LTC100光谱共焦位移传感器以其卓越的性能脱颖而出,不仅实现了30nm以下的测量误差,还保证了光斑直径小于2μm,为高精度测量领域树立了新的国产标杆。技术亮点:超高精度测量:LTC100采用先进的光谱共焦技术,通过精确控制光源发射的多波长光束与被测物体表面反射光之间的干涉现象,实现位移的高精度测量。其核心算法通过复杂的光谱分析与相位解调技术,有效消除了环境干扰和系统误差,确保测量误差稳定控制在30nm以下。微小光斑设计:传感器内置的精密光学系统采用高数值孔径物镜,结合优化的光束整形技术,实现了小于2μm的光斑直径,使得在微小结构或特征上的测量成为可能,显著提高了测量的空间分辨率。测试数据与算法公式:LTC100的性能验证基于严格的实验室测试与现场应用反馈。以下为其关键测试数据:线性度:在0-10mm测量范围内,线性偏差小于±5nm,确保测量的稳定性和可靠性。重复性:连续测量同一位置100次,标准差小于10nm,证明其高重复性和一致性。分辨率:理论上可达0.1nm,实际测量中受环境因素影响,但依旧保持在1nm左右,远超行业平均水平。核心算法公式简述如下:d=2λ0⋅2πΔϕ其中,d为被测位移...
Message 最新动态
突破精度极限:LTC100光谱共焦位移传感器——国产高精度测量的新标杆30nm精度 2024 - 11 - 20 在当今精密制造与检测领域,对微小尺寸变化的精确测量需求日益增长。特别是在半导体制造、微纳加工、光学元件检测等高端应用中,对测量误差的严格要求往往达到纳米级。面对这一挑战,国内自主研发的LTC100光谱共焦位移传感器以其卓越的性能脱颖而出,不仅实现了30nm以下的测量误差,还保证了光斑直径小于2μm,为高精度测量领域树立了新的国产标杆。技术亮点:超高精度测量:LTC100采用先进的光谱共焦技术,通过精确控制光源发射的多波长光束与被测物体表面反射光之间的干涉现象,实现位移的高精度测量。其核心算法通过复杂的光谱分析与相位解调技术,有效消除了环境干扰和系统误差,确保测量误差稳定控制在30nm以下。微小光斑设计:传感器内置的精密光学系统采用高数值孔径物镜,结合优化的光束整形技术,实现了小于2μm的光斑直径,使得在微小结构或特征上的测量成为可能,显著提高了测量的空间分辨率。测试数据与算法公式:LTC100的性能验证基于严格的实验室测试与现场应用反馈。以下为其关键测试数据:线性度:在0-10mm测量范围内,线性偏差小于±5nm,确保测量的稳定性和可靠性。重复性:连续测量同一位置100次,标准差小于10nm,证明其高重复性和一致性。分辨率:理论上可达0.1nm,实际测量中受环境因素影响,但依旧保持在1nm左右,远超行业平均水平。核心算法公式简述如下:d=2λ0⋅2πΔϕ其中,d为被测位移...
在测量被透明物体覆盖的目标时,环境照明补偿和透视测量是如何帮助提高测量准确性的? 2024 - 03 - 05 在测量被透明物体覆盖的目标时,环境照明补偿和透视测量是提高测量准确性的重要手段。这些技术的应用,在智能手机等电子设备的制造过程中,具有至关重要的作用。首先,让我们来探讨一下环境照明补偿的作用。在生产线环境中,照明条件往往并不稳定,这会对测量精度产生严重影响。环境照明补偿技术通过自动调整传感器参数,以补偿外部光照条件的变化,使得测量系统能在不同的照明条件下都能保持稳定的测量性能。这就使得我们在测量被透明物体(如手机屏幕)覆盖的目标时,能够得到更为准确的结果。其次,透视测量技术则能够解决透明物体对测量造成的干扰。由于透明物体会让部分光线穿过,使得传统的测量技术难以准确捕捉目标的位置和形状。而透视测量技术则能够通过特殊的光学设计和算法处理,使得传感器能够“看透”透明物体,直接对其背后的目标进行测量。这样,我们就可以在不接触目标的情况下,对其进行准确的测量。在智能手机等电子设备的制造过程中,这两种技术都有着广泛的应用。例如,在手机屏幕的生产过程中,环境照明补偿技术可以帮助我们确保屏幕在各种光线条件下都能显示清晰。而透视测量技术则可以用于测量手机屏幕下的各种元器件,如触摸屏、摄像头等,确保它们的位置和尺寸都符合设计要求。此外,这两种技术还可以结合使用,以提高测量的精度和效率。例如,我们可以先使用透视测量技术确定目标的位置,然后使用环境照明补偿技术对其进行精确测量。这样,我们不仅可以得到更准确...
激光三角测量法是如何实现对透明物体测量的?折射率校正在这个过程中起到了什么作用? 2024 - 03 - 05 激光三角测量法:精确测量透明物体的科技新突破在精密测量领域,激光三角测量法已成为一种非常重要的技术手段。这种测量方法尤其适用于透明物体的测量,因为它可以有效地解决透明物体测量中的诸多难题。本文将详细介绍激光三角测量法的原理、步骤,以及折射率校正在此过程中所起到的关键作用。一、激光三角测量法的原理激光三角测量法是一种基于光学三角测量原理的非接触式测量方法。其基本原理是:半导体激光器发出的激光束照射在目标物体上,接收器透镜聚集目标物体反射的光线并聚焦到感光元件上。当目标物体与测量设备之间的距离发生改变时,通过接收器透镜的反射光的位置也会相应改变,光线聚焦在感光元件上的部分也会有所不同。通过精确测量这些变化,就可以得出目标物体的位移、形状等参数。二、激光三角测量法的步骤设定参照距离:首先,需要设定一个参照距离,即在此距离下,激光束与感光元件之间的位置关系已知且稳定。照射激光:然后,通过半导体激光器发出激光束,照射在待测的透明物体上。接收反射光:接收器透镜会聚集从透明物体反射回来的光线,并将其聚焦到感光元件上。分析数据:当透明物体移动或形状发生变化时,反射光在感光元件上的位置也会发生变化。通过精确分析这些变化,就可以得出透明物体的位移、形状等参数。三、折射率校正的作用在测量透明物体时,一个关键的问题是需要考虑光的折射现象。由于透明物体的折射率与空气不同,光线在从空气进入透明物体时会发生折射...
Copyright ©2005 - 2013 无锡泓川科技有限公司

1

犀牛云提供企业云服务
Our Link
X
3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 0510-88155119
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开