服务热线: 0510-88155119
13301510675@163.com
Language
项目案例 Case
Case 激光位移

激光三角-细管道内表面光电检测方法研究

日期: 2022-01-14
浏览次数: 129

摘要:管道是气体和液体传输的重要手段,管道内表面的检测对于工业和国防中管道泄漏事故的预防,减少环境污染和经济损失非常重要。随着电子和半导体技术的发展,光电器件逐步趋于小型化。介绍了基于激光阵列、PSD光电检测、光环截面以及结构光检测等光电检测方法的测量原理和系统构成,并在此基础上对不同光电检测方法的优缺点进行了分析和比较。分析结果表明:光电检测技术适用于管道内表面检测;并朝着快速识别缺陷、管道内表面瑕疵的精确三维测量以及三维图像直观显示管壁缺陷的方向发展。

关键词:管道内表面检测;光学三角法;光电检测;激光光源

0 引言

管道作为常用气体和液体的传输手段,已被广泛应用于石油、化工、国防及排污等领域。由于工业管道长期使用后容易发生腐蚀,而且管道内部的潜在缺陷也会发展成破损而引起泄漏事故,因此必须定期对管道内部进行检测。

用于排污和输油的管道直径通常较大,其内表面检测空间较大,对传感器的体积要求不很苛刻,且传感器的驱动相对简单。而管径范围在20mm100mm的细管道在石油化工、能源和航空航天等领域有着广泛的应用,石油化工行业中占工艺设备总量50%以上的换热器和裂解反应器中管道直径通常小于50mm,由于细管道检测空间狭窄,目前仍然是管道内表面检测的难点。石油化工工艺设备中的细管道中流过的气体和液体长期处于高温、高压状态,且具有毒性和腐蚀性强等理化特性,长期使用后管道因腐蚀等作用可能出现裂纹等缺陷,易发生泄漏事故而引起重大的经济损失。此外国防工业中枪炮管的内径都小于几十毫米,对枪炮管进行定期检测也是保证武器装备安全运行的重要前提。因此细管道内表面的定期检测,可以预防管道事故并为合理维护提供科学依据,同时可以减少管道维修费用和环境污染,避免不必要的经济损失,因此管道检测在工业生产和国防工业中具有重要的意义。

针对排污、输油等大管径管道的内表面,其检测方法主要有超声波检测、漏磁检测以及射线法等。超声波及漏磁等检测技术通过向管道内表面发射并接收相应的反射信号,利用检测到的信号变化实现管道壁厚与瑕疵的检测[2],这些检测技术需要在管道某个截面附近多次发射和接收信号才能完成管道截面的检测,检测效率低,且对内表面的检测是间接的,不具有可见性,同时由于对噪声较敏感容易发生误检。由于管道具有封闭性,细管道内表面的检测空间狭窄,对于传感器的体积要求较为严格,因此管道内表面检测传感器的小型化一直是细管道内表面检测技术研究的一个重点。随着计算机技术和光电子技术发展而逐渐成熟的光电检测技术由于具有非接触、信息量大、自动化程度高等特点已经被国内外学者应用到管道内表面检测领域。同时伴随电子和半导体技术的发展,光电器件也逐步向小型化发展,使得光电检测技术越来越多地被用于细管道内表面检测。目前,用于管道检测的光电检测方法主要有摄像法、激光扫描法、视觉检测法和基于光电敏感器件的检测方法等。光电检测方法不仅可以直接检测到管道内表面的裂纹和瑕疵,而且可以对裂纹和瑕疵进行精确三维测量和定位。其中视觉检测技术由于具有可见性和信息量大等优点越来越受到国内外学者的重视,被广泛应用到管道内表面检测中。

1     管道内表面光电检测方法

1.1基于内窥镜的视频法

视频法管道内表面检测系统主要由1台或多台CCTV摄像机、管道爬行器以及用于增大视场的内窥镜等组成。检测时,爬行器带动摄像机在管道内行进,安装在摄像机上的内窥镜可以增大拍摄角度,拍摄到管道整个截面的内部场景。检测人员根据摄像机拍摄的管道内表面录像来判断管道内壁是否有缺陷。由于管道内部比较黑暗,视频法需要照明光源。随着半导体和电子技术的发展,视频法原来的CCTV摄像机已经被CCD(chargecoupleddevice)数字化摄像机替代,而且随着数字图像处理技术和人工智能技术的发展,开始采用计算机进行图像处理和识别来检测管道内壁的缺陷,克服了CCTV摄像机人工检测费时、人为因素干扰大的缺点。视频检测法只能判断管道内表面是否有瑕疵和裂纹等,不具有测量的功能,不能对管道内表面缺陷进行精确三维测量和定位。

1.2激光阵列法

该检测方法采用点阵形式的激光光源向管道内壁投射点阵光源,利用光学三角法进行管道内表面的三维测量[3]。激光器发射的激光经过光纤阵列后调制成矩形阵列的平面光源,如图1所示。该光源投射到管道内表面,利用CCD摄像机拍摄阵列图像,用光学三角法来进行三维重构。这种检测方法不是在一个垂直于管道轴线的截面上投射圆形光带,可是以检测管子的三维形貌,用做判断管子的形状是直线形、L形还是T形。这种检测手段传感器结构复杂,且测量精度和阵列分布与系统结构有关。


激光三角-细管道内表面光电检测方法研究

1 激光阵列检测原理

1.3光环截面成像法

光环截面法通过向管道内表面投射激光光环,利用激光光环反射的管道内表面信息来检测裂缝和瑕疵。系统结构如图2所示,检测系统由半导体激光器、光学系统和CCD摄像机组成。激光器发出的激光被光学系统调制成宽光带的圆环,投射到管道内表面,在管内壁形成具有一定宽度的环形光带,CCD摄像机拍摄带有管道内表面信息的圆环光带,具有圆环光带的管道内表面图像被传输到计算机中,利用人工智能算法通过分析圆环图像的灰度来判断环形带内是否有裂纹等疵病。为了提高管道内壁的亮度,使得图像更清晰,检测系统设计要求环形光带越宽越好。根据瑕疵在图像中的位置,利用透视投影原理计算瑕疵在截面上的二维坐标。瑕疵在管道内的轴向位置通过三角法计算可得,2,L为激光器及其所投射的光环之间的距离;A为光环宽度;R为管道内半径;α1为激光器和光环左侧边缘的锥面夹角;α2为光环宽度相对于激光投射器的夹角。

当激光器中心和管道截面中心不在同一轴线上时,需根据激光器偏离轴线的距离校正瑕疵的轴向位置。光环截面法检测要求光环越宽越好,但随着光环宽度增加,瑕疵的轴向定位精度随之降低。

激光三角-细管道内表面光电检测方法研究

2 光环截面法检测管道内表面

1.4圆结构光视觉检测法

圆结构光检测方法是一种主动视觉检测方法,和光环截面法不同,圆环结构光视觉检测利用调制的光条信息通过光学三角法来恢复三维信息,因此光条越窄测量精度越高。结构光视觉检测原理如图3所示,结构光源发射出的光平面投射到三维物体上,交线为含有三维物体形状信息的明亮的光条,对应在摄像机拍摄的图像上有相应的光条。假设C为投射在三维物体上光条的任一点,结构光源坐标系原点为A,摄像机坐标系原点为B,结构光与摄像机之间的距离为b,测量时被测物、结构光源和摄像机三者的相互位置关系固定,W,h,b为已知参量,则在ΔABC,利用三角关系可以唯一确定C点的三维位置。


激光三角-细管道内表面光电检测方法研究

3 结构光视觉测量原理

圆结构光测量系统结构如图4所示,和通常采用横向排列方式的结构光视觉测量系统不同,CCD摄像机和圆结构光投射器采用径向排列方式,径向结构可以有效减小传感器的体积,适于小管径管道内表面的测量。圆结构光投射器由半导体激光器和一个锥面反射镜组成,激光器发射的光到达锥面反射镜上,经锥面镜反射形成均匀的圆光条反射到管道内壁。测量时半导体激光器和CCD摄像机固定不动,被测物体被固定在一维移动设备上沿管道轴线方向移动。摄像机拍摄带有管道内表面三维信息的圆光条图像,在对圆锥光平面、摄像机及其激光器之间位置关系标定后即可测量管道内表面精确的三维信息。

激光三角-细管道内表面光电检测方法研究

4 圆结构光检测系统

1.5基于位置敏感器(PSD)的检测方法

基于位置敏感器的内表面检测方法利用激光三角法和光学扫描原理实现三维测量。位置敏感器(positionsensitivedevice)是一种侧向效应硅光电器件,当入射光照射到二维PSD光敏面上时,PSD会产生4路电流,利用4路电流和光敏面中心的关系可以确定入射光点在光敏面上的位置,进一步通过光学三角法确定空间点的三维坐标。PSD具有响应速度快、可连续采样、信号处理相对简单等特点。基于PSD的内表面检测系统如图5所示,主要由激光光源、反射镜、透明窗、旋转平面镜、透镜和PSD组成。激光光源发出的光束经反射镜反射后,在管道内壁上形成微小光点D,该光点由透镜接收后在PSD光敏面上得到像点N,D和点N到检测器中轴线的距离分别为Rr,扫描反射镜的偏转角为U,透镜主面间距为d,B为激光束和扫描反射镜面的交点,B′B关于带孔发射镜面的对称点,L表示点B′PSD光敏面的距离,f为透镜组左主面到PSD光敏面的距离。根据光学三角关系,可以求得管道内壁点D到检测器中轴线的距离R。扫描反射镜绕管道中轴线旋转360°,即可实现管道内壁截面的三维检测。由于透明窗引起的光线折射会产生偏差,在计算时需要修正由于折射引起的偏差。如果管道内表面没有缺陷,则该截面对应的R值相等;如果有缺陷,R值会发生变化。

激光三角-细管道内表面光电检测方法研究

5 基于PSD的检测系统及原理

2     管道内表面光电检测方法的比较和分析

视频法、光环截面法、基于PSD的检测方法以及圆结构光视觉检测法都能实现细管道内表面的检测,和其他管道检测方法相比,具有可见性且检测效率高的特点。视频法检测获取的信息量大,但是早期视频法采用人工方法判断瑕疵,非常耗时且容易受到人为因素的干扰。随着数字图像处理技术和计算机技术的发展,视频法检测技术向如何获取清晰的管道内表面二维图像以及如何根据二维图像信息提高对瑕疵、裂纹等缺陷判断的速度和准确率的方向发展。但视频检测法没有量化测量的能力,不能实现管道内壁三维形貌的精确测量,对于需要进行预测估计的管道瑕疵,它无法提供高精度的三维数据。

光环截面法利用拍摄图像中圆光环灰度的异常来判断瑕疵,光环可以为封闭管道提供较好的照明,增加了图像的清晰度。光环截面法利用人工智能技术分析,根据获取的图像灰度信息来判断管道内表面是否有裂纹等疵病。管道内表面的测量精度和投射的圆环宽度有关,且相邻位置的圆环光带容易发生信息重叠。和视频法相比光环截面法可以对瑕疵进行较为准确的定位,但该方法要求视觉传感器的轴线和管道轴线同轴,对测量系统的装配和测量环境要求高,其对瑕疵和缺陷的定位精度与激光投射器和管道轴线同轴度有关。

激光阵列法和基于位置敏感器的检测方法利用光学三角法和扫描原理实现管内壁任意点的精确三维测量,但对于管道某个内壁截面的测量需要机械或者光学扫描装置进行多次采集数据才能实现。因此这两种方法系统结构较为复杂,一次数据采集量小且基于位置敏感器的检测方法由于传感器自身遮挡对于管道内表面存在测量盲区。

基于圆结构光的检测方法是随着计算机技术和电子技术的发展而发展起来的新型光电检测方法,该方法由摄像机拍摄管道内表面结构信息的圆结构光条,利用精确标定的三维数学模型实现管道内表面高精度的三维测量。和其他光电检测方法相比,圆结构光检测方法可以实现精确的三维测量,系统结构简单,且对系统安装要求不高,适用性较强。

3     结论和展望

由于光电检测技术具有非接触和测量速度快的特点,目前已被广泛用于管道内表面检测。基于摄像机的视频法只能实现管道内表面的二维检测,而光环截面法不仅能判断内表面的瑕疵和缺陷,并能对瑕疵进行定位。基于位置敏感器的检测方法只能实现管道内任意一点精确的三维测量,需要多次扫描才能实现一个截面的测量。圆环结构光视觉检测方法可以利用三维重构数学模型对管道内表面进行精确的三维测量,测量效率和精度都比较高。目前管道检测技术正朝着快速诊断、分析、识别缺陷,对管道内表面瑕疵进行精确三维测量以及三维图像直观显示管壁缺陷的方向发展。因此,针对管道内表面的光电检测技术也必然向着精确三维测量和快速恢复三维形貌的方向发展。结构光视觉检测技术作为高精度三维测量的新兴检测技术适应管道内表面检测的发展方向。

论文题目:细管道内表面光电检测方法研究

作者:王颖,王建林(北京化工大学,信息科学与技术学院)


Case / 相关推荐
2025 - 03 - 22
点击次数: 11
一、传感器选型与技术优势对比颠覆性成本结构传统激光多普勒测振仪价格区间:¥150,000~¥500,000LTP080系列成本:¥11,000~¥15,000(视配置),降低设备投入90%以上维护成本对比:无光学镜片损耗,寿命>50,000小时,年维护费用低于¥500性能参数解析指标LTP080参数传统测振仪典型值采样频率50kHz(全量程)/160kHz(20%量程)1MHz~10MHz线性度&...
2025 - 03 - 19
点击次数: 7
一、项目背景与需求随着智慧交通和道路养护数字化的发展,对路面病害(如裂缝、车辙、坑槽)的高效检测需求日益迫切。传统人工巡检效率低、主观性强,而车载激光雷达方案成本高昂(单套设备超百万元)。因此,某省级公路养护中心采用泓川科技LTP系列传感器,构建低成本、高精度的路面扫描系统,目标如下:全幅覆盖:单次扫描覆盖3.5m标准车道,横向分辨率≤5mm,纵向分辨率≤2mm(车速60km/h时)。抗干扰能力:...
2025 - 03 - 11
点击次数: 16
在光伏硼扩散工艺中,石英舟(石墨舟)到位检测是确保工艺精准度和产品质量的关键环节。然而,该工况面临着两大技术难题:一是高温环境,普通传感器难以承受;二是石英舟的透光材质特性,常规检测手段无法有效检测其位置。泓川科技的 HC8-400 系列激光位移传感器凭借其卓越的性能,成功攻克这些难题,在 85°C 的石英舟工况环境下发挥了关键作用。一、项目背景在光伏产业蓬勃发展的当下,提高电池片转换效...
2025 - 03 - 07
点击次数: 40
一、行业痛点与技术创新在微电子、精密光学等领域,工件表面段差检测的精度要求已突破亚微米级(±0.5μm以内)。以某微型轴承沟槽检测为例,沟槽宽度仅0.2mm,深度公差±1μm,传统方案因采样密度不足和环境振动干扰导致误判率高达15%。泓川科技基于LTP080U超宽光斑激光位移传感器,结合高频动态扫描算法,实现了纳米级数据密度与抗干扰实时处理的突破性方案。二、高速扫描与数据采集策...
2025 - 03 - 02
点击次数: 18
一、严苛工况的双重挑战在风力发电、轨道交通等场景中,设备常面临极寒环境(-30℃)与高频机械振动的双重考验。风电塔筒在低温强风载荷下易产生微米级形变,需实时监测以确保结构安全。然而,传统传感器在低温下易出现数据漂移,振动则可能导致光学组件失准或电气连接失效。泓川科技HC16系列激光位移传感器通过多维技术创新,实现了复杂环境下的高精度、高稳定性测量。二、技术突破:从低温耐受到抗振加固的系统设计抗振结...
2025 - 02 - 28
点击次数: 19
一、应用背景手机屏幕制造过程中,表面平整度与装配精度的检测至关重要。激光位移传感器因其非接触、高精度特性被广泛应用于此类检测场景。然而,不同传感器的性能、成本及适应性差异显著。本文通过对比激光位移传感器LTP030和LTC4000F的重复性精度,并结合光谱共焦传感器的特性,探讨其在实际生产中的适用性。二、测试目的验证重复性误差:对手机屏幕两个固定位置点进行10次往返测量,评估LTP030和LTC4...
About Us
关于泓川科技
专业从事激光位移传感器,激光焊缝跟踪系统研发及销售的科技公司
中国 · 无锡 · 总部地址:无锡新吴区天山路6号
销售热线:0510-88155119 
图文传真:0510-88152650
Working Time
我们的工作时间
周一至周五:8:00-18:00
周六至周日:9:00-15:00
Shown 企业秀 More
  • 1
    2022 - 12 - 01
    在烟草分级及仓储环节中有大量的自动化设备,比如高速往复运动的穿梭车堆垛机等,如何建立完善的安全预防措施,保障作业人员的人身安全是企业在思考的方向,我们在烟草工业内部系统里面已经积累了众多的成功案例,我们会通过机械安全控制以及电器这三个维度来帮助企业进行评估,具体的改造场景有,立库输送管道出入口防护百度极速可在经过现场评估后我们会给客户出具评估报告和推荐的安全整改。                机械设备,例如马舵机,泄漏机缠绕机等在快消品行业是广泛存在的,特别是码作机器,经常需要操作人员频繁介入该区域应用的工业机器人运行速度快存在着较高的安全隐患,在转运站码垛技术入口,经常采用一套光幕和光电传感器来实现屏蔽功能,从而实现人物分离,在这个应用中,以物体在传中带上面时,车场光电传感器,从而激活,屏蔽功能,当你为触发屏蔽功能很简单,有些操作人员会拿纸箱或者其他东西遮挡这个光电传感器,从而很容易就操纵了这个屏蔽功能,存在着很大的安全隐患,针对这个问题,我们开发出创新高效的是入口防护替代方案,智能门控系统,无锡屏蔽传感器就和实现pp功能,这项专利技术是基于。             专利技术是激光幕,使出入口防务变得更加高效...
  • 2
    2023 - 09 - 11
    非接触测量涂布厚度的行业报告摘要:本报告将介绍非接触测量涂布厚度的行业应用场景及解决方案。涂布厚度的准确测量在多个行业中至关重要,如带钢、薄膜、造纸、无纺布、金属箔材、玻璃和电池隔膜等行业。传统的测量方法存在一定的局限性,而非接触测量技术的应用可以提供更准确、高效的测量解决方案。本报告将重点介绍X射线透射法、红外吸收法和光学成像测量方法这三种主要的非接触测量解决方案,并分析其适用场景、原理和优势。引言涂布厚度是涂覆工艺中的一个重要参数,对于保证产品质量和性能具有重要意义。传统的测量方法,如接触式测量和传感器测量,存在一定局限性,如易受污染、操作复杂和不适用于特定行业。而非接触测量方法以其高精度、实时性和便捷性成为行业中的理想选择。行业应用场景涂布厚度的非接触测量方法适用于多个行业,包括但不限于以下领域:带钢:用于热镀锌、涂覆和镀铝等行业,对涂层和薄膜的厚度进行测量。薄膜:用于光学、电子、半导体等行业,对各种功能薄膜的厚度进行测量。造纸:用于测量纸张的涂布、涂胶和覆膜等工艺中的厚度。无纺布:用于纺织和过滤行业,对无纺布的厚度进行测量。金属箔材:用于食品包装、电子器件等行业,对箔材的厚度进行测量。玻璃:用于建筑和汽车行业,对玻璃的涂层厚度进行测量。电池隔膜:用于电池制造行业,对隔膜的厚度进行测量。解决方案一:X射线透射法X射线透射法是一种常用的非接触涂布厚度测量方法,其测量原理基于射线...
  • 3
    2025 - 03 - 04
    一、核心参数对比表参数项LK-G08(基恩士)LTPD08(泓川科技国产)参考距离8 mm8 mm检测范围±0.8 mm±0.8 mm线性度±0.05% F.S.±0.03% F.S.重复精度0.02 μm0.03 μm采样频率20 μs1 ms(6档可调)6.25 μs1 ms(多档可调)激光类别1类(JIS C6802)2类(安全等级更高)光源功率0.3 mW0.5 mW(可定制更高功率)防护等级未标注IP67工作温度+10+40°C0+50°C(可定制-4070°C)通讯接口未标注RS485、TCP/IP、开发包支持供电电压-DC 936V(±10%波动兼容)重量245 g213 g二、性能差异深度解析1. 测量性能精度与速度: LK-G08在重复精度(0.02μm)上略优,适合超精密场景;而LTPD08的线性度(±0.03% F.S.)更优,且在采样频率上支持最高6.25μs(缩小量程时可达160kHz),动态响应能力更强。激光适应性: LTPD08提供405nm蓝光版本可选,可应对高反光或透明材质测量,基恩士仅支持655nm红光。2. 环境适应性防护等级: LTPD08的IP67防护显著优于未标注防护的LK-G08,适...
  • 4
    2023 - 10 - 11
    激光测距传感器对射技术在自动化生产线上的应用愈发广泛,今天我们将介绍一个基于两台激光测距传感器上下对射来检测橡胶带接缝的案例。在橡胶带的生产过程中,橡胶带的接缝是一个非常关键的部位。由于橡胶带在运输行走的过程中,其厚度会随着接缝的存在而变化。接缝是由两个橡胶带重叠在一起形成的,因此接缝的厚度显然会大于橡胶带本身。为了保证产品质量和生产效率,我们需要及时准确地检测并计数橡胶带的接缝。我们采用了两台激光测距传感器进行上下对射的方式来实现这一目标。具体操作如下:首先,将一台激光测距传感器安装在橡胶带上方,另一台安装在橡胶带下方,使得两台传感器之间垂直对射。通过激光束的反射和接收时间的测量,可以获取到橡胶带表面和接缝的距离信息。当橡胶带的接缝位置经过测距传感器时,根据上文提到的厚度大于阈值的特点,我们可以通过一个内部的比较器来判断是否检测到了接缝。当橡胶带的厚度数据高于预设的阈值时,比较器将输出一个开关量信号,表示接缝位置被检测到。通过这种方式,我们不需要具体测量接缝的厚度数值,只需要一个开关量信号,就可以实现对橡胶带接缝位置质量的检测和接缝数量的计数。这对于保证产品质量、提高生产效率具有重要意义。总结起来,利用两台激光测距传感器上下对射的方法,结合内部的比较器功能,我们可以实现对橡胶带接缝位置的检测。这种技术应用既简单又有效,可以在自动化生产线中广泛应用,提高生产效率并确保产品质量的稳定...
  • 5
    2025 - 01 - 04
    在工业生产的众多环节中,板材厚度测量的重要性不言而喻。无论是建筑领域的钢梁结构、汽车制造的车身板材,还是电子设备的外壳,板材的厚度都直接关乎产品质量与性能。哪怕是微小的厚度偏差,都可能引发严重的安全隐患或使用问题。传统的板材厚度测量方法,如卡尺测量、超声波测量等,各有弊端。卡尺测量效率低、易受人为因素干扰;超声波测量则在精度和稳定性上有所欠缺,面对高精度需求时常力不从心。而激光位移传感器的出现,为板材厚度测量带来了革命性的变化。它宛如一位精准的 “测量大师”,凭借先进的激光技术,实现非接触式测量,不仅精度极高,还能快速、稳定地获取数据,有效规避了传统测量方式的诸多问题。接下来,让我们一同深入探究,两台激光位移传感器是如何默契配合,精准测量板材片材厚度的。激光位移传感器测厚原理大揭秘当谈及利用两台激光位移传感器对射安装测量板材片材厚度的原理,其实并不复杂。想象一下,在板材的上下方各精准安置一台激光位移传感器,它们如同两位目光犀利的 “卫士”,紧紧 “盯” 着板材。上方的传感器发射出一道激光束,这束激光垂直射向板材的上表面,而后经板材上表面反射回来。传感器凭借内部精密的光学系统与信号处理单元,迅速捕捉反射光的信息,并通过复杂而精准的算法,计算出传感器到板材上表面的距离,我们暂且将这个距离记为 。与此同时,下方的传感器也在同步运作。它发射的激光束射向板材的下表面,同样经过反射、捕捉与计算...
  • 6
    2025 - 01 - 14
    一、引言1.1 研究背景与意义玻璃,作为一种用途极为广泛的材料,凭借其透明、坚硬且易于加工的特性,在建筑、汽车、电子、光学仪器等众多行业中占据着举足轻重的地位。在建筑领域,玻璃不仅被广泛应用于建筑物的窗户、幕墙,以实现采光与美观的效果,还能通过巧妙设计,增强建筑的整体通透感与现代感;在汽车行业,从挡风玻璃到车窗,玻璃的质量与性能直接关系到驾乘人员的安全与视野;在电子行业,显示屏、触摸屏等关键部件更是离不开玻璃,其质量和精度对电子产品的性能和用户体验有着深远影响。在玻璃的生产、加工以及应用过程中,对其进行精确测量显得至关重要。以玻璃基板为例,这一液晶显示器件的基本部件,主要厚度为 0.7mm 及 0.5mm,且未来制程将向更薄(如 0.4mm)迈进。如此薄的厚度,却要求严格的尺寸管控,一般公差在 0.01mm。玻璃厚度的均匀性、平整度以及表面的微观形貌等参数,直接决定了玻璃在各应用场景中的性能表现。例如,汽车挡风玻璃若厚度不均匀,可能导致光线折射异常,影响驾驶员视线;电子显示屏的玻璃基板若存在平整度问题,会影响显示效果,出现亮点、暗点或色彩不均等现象。传统的玻璃测量方法,如千分尺测量、激光三角法等,虽在一定程度上能满足部分生产需求,但在精度、效率以及适用范围等方面存在诸多局限。千分尺测量属于接触式测量,容易受到人工操作的影响,导致测量误差较大,且可能对玻璃表面造成损伤;激光三角法对透...
  • 7
    2025 - 02 - 09
    1. 性能参数对比参数LTP400基恩士 LK-G400米铱 ILD1420-200测量范围±100 mm漫反射 ±100 mm200 mm(具体范围依型号)采样频率160 kHz(最高)50 kHz(对应 20 μs)8 kHz(可调)静态噪声1.5 μm(平均后)2 μm(再现性)8 μm(重复性)线性误差±0.05% F.S.(±100 μm)±160 μm光斑直径Φ300 μm(W型号更宽)ø290 μm750 x 1100 μm(末端)接口类型以太网、485、模拟输出未明确(可能基础)RS422、PROFINET、EtherCAT防护等级IP67IP67IP67重量438 g380 g(含线缆)145 g(带电缆)可定制性激光功率、蓝光版本、模拟模块无提及ASC(动态表面补偿)、多种工业接口2. LTP400 的核心优势超高采样频率(160 kHz)远超 LK-G400(50 kHz)和 ILD1420-200(8 kHz),适用于高速动态测量场景(如振动监测、快速产线检测)。优异的静态噪声与线性精度平均后静态噪声仅 1.5 μm,优于 LK-G400(2 μm)和 ILD1420-200(8 μm)。线性误差 ,显著优于 LK-G400(±100 μm)和 ILD1420-200(...
  • 8
    2023 - 09 - 20
    首先,让我们对TOF进行一次短暂的“速读”——它全称叫'time-of-flight',中文怎么说呢?风格洒脱地称之为“飞行时间”。你没听错,就是“飞行时间”。所有的颠覆与创新始于赤裸裸的想象,对吧?再来回过头,看看我们的主角TOF激光测距传感器。激光这东西,我想你肯定不陌生。科幻大片,医美广告里都被频繁提及。对这位明星,我们暂时按下暂停键, 我们聊一聊测距传感器——那可是能把复杂的三维世界,硬是证明成一串串精准数据的硬核工具。当然,他俩的组合,并不是偶然撞壁造成的火花。在“鹰眼”TOF的身上,激光变得更加酷炫,传感器技术也变得更为深邃。他们共舞的主线,就是光的飞行时间。想象一下,要在现实世界计算出光从物体发射出来,然后反射回传感器的时间。你愣了一秒,觉得好像进入了'黑洞'的领域。实则不然,TOF激光测距传感器就是这样“耳提面命”。它以光速旅行者的姿态,穿越空间,告诉我们物体与之间的距离。亲,你有听说过光速吗?大约每秒走30万公里哦,这个速度足够你在一秒钟内去绕地球七点五圈了!TOF激光测距传感器就是他们利用这么一个迅疾的光速,再加上高精度的时钟,来高效精确地计算出飞行时间并转化为距离数据。小编想说,TOF不仅玩科技,他更玩智谋,战胜了同类的超声波、红外线等测距设备。毕竟,被物的颜色、亮度、表面材质,或者环境的温湿度对他来说都不构成锁链。准确到“下毛...
Message 最新动态
泓川科技国产激光位移传感器HC16-15与进口Micro-Epsilon米铱ILD1420-10技术... 2025 - 04 - 02 以下为HC16-15国产激光位移传感器与进口ILD1420-10的对比分析报告,重点围绕技术参数、性能指标及国产替代可行性展开:一、核心参数对比指标HC16-15(泓川科技)ILD1420-10(Micro-Epsilon)测量范围±5mm(总10mm)10mm(SMR 20mm至EMR 30mm)线性度±0.1% F.S.±0.08% F.S.重复精度1μm0.5μm采样频率3000Hz(最高)4000Hz(最高)光源波长655nm(可见红光)670nm(可见红光)输出接口RS485(Modbus RTU)、0-10V/4-20mARS422、4-20mA/1-5V工作温度-10°C ~ +50°C0°C ~ +50°C防护等级IP67IP65尺寸(mm)44×31×18约47.5×14(主体)重量70g(含线缆)60g(含线缆)激光安全等级Class 2Class 2(ILD1420)/ Class 1(CL1版本)二、性能深度分析1. 精度与稳定性HC16-15:线性度±0.1% F.S.(优于多数国产传感器),1μm重复精度满足工业级需求,温度特性0.05% F.S/°C,适合宽温环境。ILD1420-10:线性度±0.08% F.S....
关于德国米铱(Micro-Epsilon)optoNCDT 1420 系列激光位移传感器的深度研究报... 2025 - 04 - 02 一、引言1.1 研究背景与意义在现代工业生产与精密测量领域,对高精度、高可靠性位移测量技术的需求与日俱增。激光位移传感器凭借其非接触测量、高精度、高响应速度以及抗干扰能力强等显著优势,已成为实现自动化生产、质量控制与精密检测的关键技术手段,广泛应用于汽车制造、电子生产、机械加工、航空航天等众多行业。optoNCDT 1420 系列激光位移传感器作为德国米铱(Micro-Epsilon)公司推出的微型化、高精度位移测量解决方案,在尺寸、性能与功能集成等方面展现出独特的优势。其紧凑的设计使其能够轻松集成到空间受限的设备与系统中,满足了现代工业对设备小型化、集成化的发展需求;同时,该系列传感器具备出色的测量精度与稳定性,可实现对微小位移变化的精确检测,为精密测量与控制提供了可靠的数据支持。深入研究 optoNCDT 1420 系列激光位移传感器的技术原理、性能特点及应用场景,对于推动激光位移测量技术的发展,拓展其在各行业的应用范围,提升工业生产的自动化水平与产品质量具有重要的理论与实际意义。通过对该系列传感器的全面剖析,能够为相关领域的工程师、技术人员提供有价值的参考依据,帮助他们更好地选择与应用激光位移传感器,解决实际工程中的测量难题。1.2 研究目标与范围本研究旨在全面深入地探究 optoNCDT 1420 系列激光位移传感器,具体目标包括:详细阐述该传感器的工作原理,深入分析其技术...
泓川科技 LTM3-030/LTM3-030W 国产激光位移传感器替代进口基恩士 IL-S025 的... 2025 - 03 - 27 1. 引言在工业自动化领域,激光位移传感器是实现高精度非接触测量的核心器件。基恩士 IL-S025 作为市场主流产品,以其 1μm 重复精度和稳定性能著称。然而,随着国产传感器技术的突破,泓川科技 LTM3-030/LTM3-030W 型号凭借更高的性能参数和经济性,为用户提供了新的选择。本文将从技术参数、性能表现、应用场景等方面,深入对比分析两者的替代可行性。 2. 核心技术参数对比参数基恩士 IL-S025泓川科技 LTM3-030/LTM3-030W对比结论重复精度1μm0.25μm(LTM3-030)/ 0.25μm(LTM3-030W)LTM3 系列更优(4 倍精度提升)线性误差±0.075% F.S.(±5mm 范围)LTM3-030W 更优(接近 IL-S025)测量范围±5mm(参考距离 25mm)±5mm(参考距离 30mm)等效采样频率3kHz(采样周期 0.33ms)10kHzLTM3 系列更优(3倍速度提升)光斑尺寸25×1200μm(线性光斑)Φ35μm(M3-030)/ Φ35×400μm(M3-030W)LTM3 系列光斑更小(点光斑更聚焦)光源类型660nm 激光(Class 2)655nm 激光(Class 2)等效接口配置需外接放大器单元(支持 EtherNet/IP 等)...
Copyright ©2005 - 2013 无锡泓川科技有限公司

1

犀牛云提供企业云服务
Our Link
X
3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 0510-88155119
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开