服务热线: 0510-88155119
13301510675@163.com
Language
项目案例 Case
Case 激光位移

激光在线测厚振动分析与精度优化

日期: 2022-01-17
浏览次数: 99

摘要:激光测厚具有安全可靠、测量精度高、测量范围大等优点,广泛应用于纸张、电池极片等薄膜类材料厚度的在线测量。带材宽幅方向扫描测厚时由于扫描架往复运动会产生机械振动,影响在线测厚精度。针对该问题,以锂离子电池极片厚度测量为例,使用双激光差动式测厚平台对电池极片和铜箔分别进行厚度测量,然后对测厚数据进行频谱分析,探究其振动规律的相似性,并基于频谱分析结果采用滑动带阻滤波方式对测厚数据进行处理,滤波后极片和铜箔的厚度极差分别降低了33.4%和73.8%,有效过滤了机械振动导致的测量误差,可满足极片和铜箔厚度测量的精度要求。


关键词:激光测厚;振动;频谱;滤波


0引言

激光测厚具有安全可靠、测量精度高、测量范围大等优点,广泛应用于纸张、木板、钢板、传输带、橡胶片、电池极片等材料厚度的在线检测。如在锂离子电池生产制造过程中,激光测厚就被用于极片涂布和辊压厚度的在线测量,以保证电池极片的良品率,从而保障电池的安全性、容量和寿命等关键指标。薄膜材料的制造大多采用低成本、高效率的卷对卷制造工艺,在加工制造的过程中,为了实现带材宽幅方向的厚度测量,一般需要采用多传感器或扫描式测量的方式,后者由于低成本优势在工业界应用较多。


扫描式测厚时由于扫描架的往复运动产生的机械振动,极大地影响了其测量精度,使得其无法满足电池极片等高精度应用领域的测量需求。在扫描过程中,激光位移传感器固定于扫描架上,受扫描运动影响,会产生姿态和相对位置的变化,大致测量值出现波动,最终导致测量结果出现偏差。除了振动之外,其他因素如激光束旋转、带材偏转等也会引起测量误差,但这些均属于静态误差,可通过标定的方式去除。因此,在激光测厚的过程中,对振动的控制和消除成为保证测量精度的关键。


对于如何降低激光测厚中的动态偏差,研究人员做了多方面的研究。在扫描架结构优化方面,中南大学的周俊峰和敖世奇对激光测厚C型架进行了模态分析与振动实验,并改进了C型架的结构;Kramer等提出了矩形框架结构,并通过添加额外的激光器和探测器来实现对上下激光位移传感器之间距离波动的补偿。在数据处理方面,郭媛等通过对钢板厚度测量结果进行补偿,弥补了因温度、板材材质不同及振动偏移引起的误差,大大提高了测量精度;关淑玲等运用数据处理的方法来消除环境白噪声的污染,比较了多种滤波方式对激光测厚振动误差消除的效果,运用加权平均法和小波滤波对数据进行处理,提高了测量精度;陈功等使用多尺度小波变换、稀疏矩阵解法对激光测厚的数据进行处理,降低了振动对测量结果的影响。这些技术和研究工作在不同层面上减小了激光扫描测厚过程中振动导致的测量误差,但同时也存在着成本高、安装精度要求高等局限性,无法满足薄膜激光测厚的需求。


基于此,本文以高精度的锂离子电池极片厚度测量为例,通过多次实验测量,探究扫描式机械振动所致误差的规律性,并分析比较了测量数据的频谱。在此基础上,采用滑动带阻滤波方法,通过匹配频率相似区间并对测量结果进行修正,来消除了振动对测量结果的影响,提高了测量精度。


基于滑动带阻滤波的振动补偿方法

振动干扰对应的频率并非是固定的,而是表现为一定区间的复杂频谱,是许多不同频率和不同振幅的谐振组合。解决复杂频谱去噪问题的关键是要有效区分有用信号和噪声信号,并去除噪声信号。为此,本文提出一种滑动带阻滤波的方法,通过滑动区间的方式寻找频谱之间相似度最大的部分,从而确定振动噪声频率段,最终达到去除噪声的目的。


在激光测厚过程中,有用信息为待测材料的厚度波动信息,噪声信号主要成分为机械振动。基于此,含机械振动噪声的厚度数据滑动带阻滤波的具体步骤如下:

1)在同一工作条件下采集不同对象的多组厚度数据,对采集到的厚度信号值进行傅里叶变换并进行归一化处理;

2)选择起始频率值f(f大于厚度波动频率)、终止频率值f和振动频率所在范围边界f。利用余弦相似度计算公式计算待测带材在所选频率区间内的余弦相似度C,其计算公式为

激光在线测厚振动分析与精度优化

式中,X,Y为两组频谱所选区间的数据点,n为带宽,n=f-f

3)将频率区间向右扩展L,即起始频率值为fa,终止频率值为f+L,利用余弦相似度计算公

式计算待测带材在新频率区间内的余弦相似度C1,同时记录对应的频率区间;

4)重复步骤3)m次,每次计算的余弦相似度为C,直至终止频率值f+mL到达振动频率所在的范围边界f

5)比较多次计算得到的余弦相似度(C~C),选择最大相似度Cmax的对应区间作为相似区间;

6)当数据组数量超过2时,应综合考虑各个数据组之间的相似度,依据平均相似度选择最终的相似区间,平均相似度Cavg的计算方法见式(2):

激光在线测厚振动分析与精度优化

式中,αij为权重,Cij,m为第i组与第j组数据在第m次时的相似度,Cavg,m为第m次的相似度平均值,不做特殊说明时α=1/n;

7)针对相似区间,设计带阻滤波器对数据进行滤波处理,实现振动补偿。整个算法的流程如图1所示。

激光在线测厚振动分析与精度优化

图1滑动带阻滤波算法流程图


2激光测厚实验

2.1实验装置

双激光位移传感器上下差动式测厚系统主要包括激光测量装置、校准装置、横向扫描运动机构、机架等四部分。系统原理图如图2所示,整个装置通过地脚固定在地面,极片经张力辊绷直后水平铺放在传送辊之间,激光位移传感器固定于扫描C架上下两臂,对极片进行差动式测厚。激光测厚系统基本原理如图2所示,根据C架间隔距离S和两个激光位移传感器测得的位移值A,B可得带材厚度h=S-A-B。激光测量装置采用某品牌激光位移传感器(测量范围为±3mm,重复精度为0.02μm),能够满足极片测厚的精度要求;电机控制C架做扫描运动,实现对带材宽幅方向厚度的动态测量。测量过程中,激光位移传感器将测得的厚度数据实时传输至上位机进行读取和存储。

激光在线测厚振动分析与精度优化

图2测厚系统原理图


为了探究测厚系统的精度以及振动对测量结果的影响,设计并进行了多组实验。实验材料包括500μm(制造精度为±μm)的标准厚度量块、15μm的空铜箔(制造精度为±μm)和180.5μm的电池极片(制造精度为±μm)。其中标准厚度量块用于测厚系统的精度检验和标定,其余材料用于检验测厚系统的有效性并分析机械振动对测量精度的影响。实验方式包括静态测厚和动态扫描测厚,其中静态实验为静态定点测厚,动态实验为C架以55mm/s速度移动的扫描测厚。


2.2实验步骤

1)测厚系统精度检验实验

首先对500μm的标准厚度量块进行厚度测量,将标准厚度量块置于中空载物台,进行单点静态测厚,检验静态条件下该测厚系统的厚度测量结果是否满足精度要求。

2)测厚系统标定

将标准片调整为水平状态,移动C型架到标准片的位置进行测量,重复多次得到平均厚度测量值H,与标准片实际厚度值h相减得到差值,则标准片的测量值H被校准成了实际值h,系统静态误差得以消除,实现系统标定。

3)重复性测量实验

系统标定后,将带材绷紧固定于张力辊和过辊上,对厚度为180.5μm的电池极片同一部分进行多

次厚度扫描测量,对比测量结果,检验该测厚系统是否具有较高的重复精度。

4)空铜箔、极片厚度测量实验

将15μm的空铜箔和180.5μm的电池极片固定于张力辊和过辊上,用55mm/s的扫描速度对铜箔和电池极片进行动态横向扫描测量。根据测厚结果检验测厚系统是否满足实际锂离子电池极片生产制造过程中的测量精度要求。


3结果与讨论

3.1测厚实验标定及重复性验证

本实验采用500μm的标准厚度量块,目的是检验测厚系统的精度,测量结果如图3(a)所示,厚度极差仅为0.28μm(优于制造精度1μm),说明测厚平台的精度满足测量要求。

激光在线测厚振动分析与精度优化

(a)测厚数据


实验中对同一极片的同一部位以55mm/s的扫描速度进行两次扫描测量,结果如图3(b)所示,两次测厚结果基本吻合,相差最大值约为1.5μm,验证了测厚系统的重复精度。

激光在线测厚振动分析与精度优化

(b)两次重复扫描测量结果

图3标准厚度量块测厚及重复性验证结果


3.2极片、空铜箔扫描测厚

在上一节图3(b)中,扫描测厚过程测量结果波动较大,对图3(b)测厚数据进行频谱分析,结果如图4所示。对比静态测量数据的频谱和扫描测量数据的频谱,可以看出静态误差对频域的影响远低于振动和带材本身厚度波动带来的影响,因而去除测量过程中振动的影响是保证测量精度的关键。此外,在测厚数据的频域分析中,厚度波动为低频信号,而振动带来的干扰在频谱中也体现为低频信号,故在数据处理时,应注意保留真实的厚度波动信息。

激光在线测厚振动分析与精度优化

图4静态、扫描测量频谱图


极片和铜箔在55mm/s的扫描速度下得到的测厚数据的频谱如图5所示。可以看出,极片与铜箔的频谱变化规律十分相似,在低频、250Hz和400Hz附近都有着相近的频率分布,且高幅值的信号主要集中在低频部分,与实际机械振动和厚度波动的频谱相符。由频谱的相似性推断,在相同的试验环境下,极片和铜箔测厚过程受到的影响是相近的。在本文的实验条件下,C架的振动是低频的,在对测厚数据进行处理的过程中,运用求交的思想,找到低频段中相似的部分,以此作为振动的影响。

激光在线测厚振动分析与精度优化

(a)电极1       (b)铜箔1


激光在线测厚振动分析与精度优化

(c)电极2       (d)铜箔2


激光在线测厚振动分析与精度优化

(e)电极3       (f)铜箔3

图5电池极片、铜箔振动频谱图


匹配最佳相似区间采用第1节中所述方法,对频谱数据进行滑动带阻滤波处理。根据图5及机械振动频率,选择fa=10Hz,fb=15Hz,fv=150Hz,L=1Hz,最终选择Cmax对应频率区间10~103Hz作为相似区间,此时极片1,2,3和铜箔1,2,3相似度结果如图6所示。

激光在线测厚振动分析与精度优化

图6相似度


通过对比极片和铜箔频谱,发现在10~103Hz区间极片与铜箔的频谱吻合度较高,而极片和铜箔基于相同条件进行扫描测量,因此该频率段即为振动干扰的体现;而在1~5Hz区间,极片幅值远大于铜箔幅值,可视为本身厚度的波动体现。由此可见,厚度本身的波动频率和振动所致的频率有着数量级上的区别,通过滑动带阻滤波能较好地分离出厚度信息。


基于此,设计带阻滤波器对数据进行处理,滤除10~103Hz区间信号,得到了修正后的数据,结果如图7及表1所示。可看出在C架移动扫描的情况下,滤波处理前极片和空铜箔厚度测量值波动较大,经滤波处理后,整体数据较为平稳。其中铜箔滤波后极差为0.73μm(降低了73.8%),满足铜箔制造精度±1μm的要求。极片滤波后极差为4.06μm(降低了33.4%),此外,在工业生产中,极片本身涂布厚度约有±2μm的精度偏差,图7中修正后的数据波动符合实际厚度变化,说明滑动带阻滤波处理有效消除了振动对测厚结果的干扰,同时较好地保留了厚度的真实值。

激光在线测厚振动分析与精度优化

(a)极片厚度


激光在线测厚振动分析与精度优化

(b)铜箔厚度

图7扫描厚度测量结果


激光在线测厚振动分析与精度优化


4结语

带材宽幅方向动态扫描测厚时,扫描架的往复运动会产生复杂的机械振动,影响激光测厚精度。本文以锂离子电池极片和空铜箔测量为例,发现空铜箔测厚数据的频谱和电池极片测厚数据频谱十分相似,且高幅值干扰信号主要集中于低频部分,其频率与机械振动频率较为符合,说明二者在测量的过程中受到了相似机械振动的干扰,最终导致了测量误差。基于此,提出了滑动带阻滤波的方法,寻找信号频谱最佳相似区间作为振动噪声区间,并设计滤波器对测量数据进行处理。通过相似度匹配可得,振动所致的噪声频率为10~103Hz,与带材本身厚度波动频率(1~5Hz)存在数量级上的差别,两者能够较好地分离。通过带阻滤波器去除10~103Hz区间的振动频率,滤波后极片和铜箔的极差分别降低了33.4%和73.8%,可满足实际的测厚精度要求。



论文标题: Vibration Analysis And Precision Optimization of Laser OnlineThickness Measuremen


Case / 相关推荐
2025 - 03 - 07
点击次数: 0
一、行业痛点与技术创新在微电子、精密光学等领域,工件表面段差检测的精度要求已突破亚微米级(±0.5μm以内)。以某微型轴承沟槽检测为例,沟槽宽度仅0.2mm,深度公差±1μm,传统方案因采样密度不足和环境振动干扰导致误判率高达15%。泓川科技基于LTP080U超宽光斑激光位移传感器,结合高频动态扫描算法,实现了纳米级数据密度与抗干扰实时处理的突破性方案。二、高速扫描与数据采集策...
2025 - 03 - 02
点击次数: 6
一、严苛工况的双重挑战在风力发电、轨道交通等场景中,设备常面临极寒环境(-30℃)与高频机械振动的双重考验。风电塔筒在低温强风载荷下易产生微米级形变,需实时监测以确保结构安全。然而,传统传感器在低温下易出现数据漂移,振动则可能导致光学组件失准或电气连接失效。泓川科技HC16系列激光位移传感器通过多维技术创新,实现了复杂环境下的高精度、高稳定性测量。二、技术突破:从低温耐受到抗振加固的系统设计抗振结...
2025 - 02 - 28
点击次数: 9
一、应用背景手机屏幕制造过程中,表面平整度与装配精度的检测至关重要。激光位移传感器因其非接触、高精度特性被广泛应用于此类检测场景。然而,不同传感器的性能、成本及适应性差异显著。本文通过对比激光位移传感器LTP030和LTC4000F的重复性精度,并结合光谱共焦传感器的特性,探讨其在实际生产中的适用性。二、测试目的验证重复性误差:对手机屏幕两个固定位置点进行10次往返测量,评估LTP030和LTC4...
2025 - 02 - 28
点击次数: 12
项目背景某微型电机厂商需对5G基站散热风扇(直径80mm,转速12,000 RPM)进行全自动动平衡检测。传统接触式测振仪效率低且无法定位偏心源,改用激光位移传感方案实现毫秒级在线检测与校正指导。技术指标配置参数项配置说明传感器型号LTP150(标准光斑版)采样频率160kHz(量程缩小至±8mm,满足叶片全周密集采样)量程范围±8mm(适配小型风扇形变量±3mm)重...
2025 - 02 - 01
点击次数: 33
四、非接触测量平面度的测量方式与算法4.1 测量方式在高精度激光测距传感器用于非接触测量平面度的领域中,测量方式多种多样,每种方式都依据其独特的原理和技术优势,在不同的应用场景中发挥着关键作用。这些测量方式的不断创新和完善,为实现高精度、高效率的平面度测量提供了坚实的技术支撑。4.1.1 单传感器测量平面度单传感器测量平面度,是一种基础且应用广泛的测量方式。在实施测量之前,安装与校准是至关重要的环...
2025 - 02 - 01
点击次数: 22
一、引言1.1 研究背景与意义在现代工业生产和科学研究的广袤版图中,高精度的测量技术宛如基石,支撑着各个领域的蓬勃发展。而高精度激光测距传感器,作为非接触测量领域的璀璨明星,正以其卓越的性能和独特的优势,在变形和平面度测量领域掀起一场技术革新的风暴。在工业生产领域,无论是汽车制造中对车身面板平整度的严苛要求,还是电子设备制造中对电路板微小变形的精细把控,高精度激光测距传感器都扮演着不可或缺的角色。...
About Us
关于泓川科技
专业从事激光位移传感器,激光焊缝跟踪系统研发及销售的科技公司
中国 · 无锡 · 总部地址:无锡新吴区天山路6号
销售热线:0510-88155119 
图文传真:0510-88152650
Working Time
我们的工作时间
周一至周五:8:00-18:00
周六至周日:9:00-15:00
Shown 企业秀 More
  • 1
    2023 - 02 - 26
    今天我为大家展示安全激光扫描仪产品,安全激光扫描仪适用于各种应用技术领域,      在设备开发期间我们给予了特别关注,以确保它能够在广泛应用中发挥最佳功能,尤其重视大型工作区域的防护,例如机床正面区域或机器人工作区域。      其他应用包括移动车辆的防护,例如侧向滑动装置或移动运输设备,无人驾驶运输系统。甚至垂直安装激光扫描仪的出入口保护系统。尽管我们在安全激光扫描与领域,已经有数10年的经验了,但该应用领域仍然面对许多挑战。不过我们的激光安全扫描仪具有独一无二的功能属性,例如具有8.25米检测距离和270度扫描范围。       属于目前市场上的高端设备,非常适合侧向滑动装置正面区域等大型区域或长距离的防护。该设备的另一个亮点就是能够同时监测两个保护功能。这在许多应用领域中,独具优势以前需要使用两个设备,如今只需要使用一台这样的安全激光扫描仪,即可完成两台设备的功能。               实践中遇到的一项挑战是设计一款异常强骨的激光安全扫描仪。能够适应周围环境中可能存在的灰尘和颗粒等恶劣条件,因此我们提供了较分辨率达到0.1度的设备。它在目前市场上具有非常高的价值。   ...
  • 2
    2025 - 01 - 10
    一文读懂白光干涉测厚仪在工业生产、科研领域,精准测量材料厚度常常起着决定性作用。从电子设备的精细薄膜,到汽车制造的零部件,再到航空航天的关键组件,材料厚度的精准把控,直接关系到产品质量与性能。而在众多测厚技术中,白光干涉测厚仪凭借其超高精度与先进原理,脱颖而出,成为众多专业人士的得力助手。今天,就让我们一起深入了解这款神奇的仪器。原理:光学魔法精准测厚白光干涉测厚仪的核心原理,宛如一场精妙的光学魔法。仪器内部的光源发出的白光,首先经过扩束准直,让光线更加整齐有序。随后,这束光抵达分光棱镜,被巧妙地分成两束。一束光射向被测物体表面,在那里发生反射;另一束光则投向参考镜,同样被反射回来。这两路反射光如同久别重逢的老友,再次汇聚,相互干涉,形成了独特的干涉条纹。这些干涉条纹就像是大自然书写的密码,它们的明暗程度以及出现的位置,与被测物体的厚度紧密相关。当薄膜厚度发生细微变化时,光程差也随之改变,干涉条纹便会相应地舞动起来。通过专业的探测器接收这些条纹信号,并运用复杂而精准的算法进行解析,就能精确地计算出薄膜的厚度值,就如同从神秘的密码中解读出关键信息一般。打个比方,想象白光如同一场盛大的交响乐,不同波长的光如同各种乐器发出的声音。当它们在物体表面反射并干涉时,就像是乐器合奏,产生出独特的 “旋律”—— 干涉条纹。而我们的测厚仪,便是那位精通音律的大师,能从这旋律中精准听出薄膜厚度的 “音...
  • 3
    2023 - 09 - 26
    1 激光光热技术测厚:原理是利用激光照射材料,产生的热量使材料产生变化,再通过光学方式检测这种变化以确定材料的厚度。优点是非接触式、无损伤、准确;缺点也是显而易见的,对于颜色、形状、表面纹理等都有不同程度的影响。2 白光干涉测厚:原理是使用白光干涉仪产生干涉图案,然后通过分析干涉图案得材料厚度。优点是测量精度高、灵敏度高;缺点是设备复杂且成本高昂。3 激光干涉测厚:主要是利用激光波的相干性,测量物体的干涉条纹来反推出物体的厚度。优点是测量精度高、速度快;但激光源的稳定性和调节技术要求比较高。4 光谱共聚焦测厚:该方法是根据材料对不同波长光的反射、折射和吸收特性,同时探测所有波长的光谱,从而计算出材料厚度。优点是测量准确、适用范围广;缺点是设备复杂、操作要求高。5 椭圆偏光法测厚:原理是利用光的偏振特性对材料进行测量,根据计算出材料厚度。优点是接触、无损伤,但适用范围有限。6 红外吸收法测厚:红外吸收法是指通过测定红外光在材料中吸收的程度来推断优点是测量过程简单、直观、精度高;缺点是对材料的红外吸收特性有严格要求。7 X/β射线测厚:主要是利用X射线或者β射线穿透材料时,穿透的射线强度和物体的厚度之间存在一定的关系。优点是精确、可靠;缺点是人体安全需要考虑。8 电容测厚:原理是利用两极板间的电容量与介质厚度成正比,通过测量电容量来测量厚度。优点是设备简单、便宜;缺点是精度较低。9 反...
  • 4
    2024 - 03 - 05
    在测量被透明物体覆盖的目标时,环境照明补偿和透视测量是提高测量准确性的重要手段。这些技术的应用,在智能手机等电子设备的制造过程中,具有至关重要的作用。首先,让我们来探讨一下环境照明补偿的作用。在生产线环境中,照明条件往往并不稳定,这会对测量精度产生严重影响。环境照明补偿技术通过自动调整传感器参数,以补偿外部光照条件的变化,使得测量系统能在不同的照明条件下都能保持稳定的测量性能。这就使得我们在测量被透明物体(如手机屏幕)覆盖的目标时,能够得到更为准确的结果。其次,透视测量技术则能够解决透明物体对测量造成的干扰。由于透明物体会让部分光线穿过,使得传统的测量技术难以准确捕捉目标的位置和形状。而透视测量技术则能够通过特殊的光学设计和算法处理,使得传感器能够“看透”透明物体,直接对其背后的目标进行测量。这样,我们就可以在不接触目标的情况下,对其进行准确的测量。在智能手机等电子设备的制造过程中,这两种技术都有着广泛的应用。例如,在手机屏幕的生产过程中,环境照明补偿技术可以帮助我们确保屏幕在各种光线条件下都能显示清晰。而透视测量技术则可以用于测量手机屏幕下的各种元器件,如触摸屏、摄像头等,确保它们的位置和尺寸都符合设计要求。此外,这两种技术还可以结合使用,以提高测量的精度和效率。例如,我们可以先使用透视测量技术确定目标的位置,然后使用环境照明补偿技术对其进行精确测量。这样,我们不仅可以得到更准确...
  • 5
    2025 - 01 - 14
    四、传感器技术发展趋势4.1 微型化与集成化发展在科技迅猛发展的当下,传感器技术正朝着微型化与集成化的方向大步迈进,这一趋势蕴含着诸多关键意义。随着微电子机械系统(MEMS)技术的不断突破,传感器的体积正以前所未有的速度不断缩小。依据《从微观到宏观,揭秘未来传感器的5大趋势》的观点,微型传感器借助微机械加工技术,能够将微米级的敏感元件、信号处理器以及数据处理装置巧妙地封装在一块芯片之上。这种微型化的设计使得传感器的体积大幅减小,重量显著降低,同时功耗也得到了有效控制。微型化传感器的优势不言而喻。在航空航天领域,其对设备的体积和重量有着极为严苛的要求。微型传感器的出现,能够轻松嵌入到各种狭小的空间内,为飞行器的导航、姿态控制等系统提供精准的数据支持,助力航空航天设备实现轻量化和高性能化。在医疗领域,微型传感器可用于可穿戴式医疗设备,实时监测患者的生理参数,如心率、血压、血糖等,为患者提供持续、便捷的健康监测服务。集成化则是将多个传感元件和处理单元有机整合在一起,从而实现多个物理量的同时测量。通过集成温度、湿度、压力等多种传感器,能够为环境监测提供更为全面、准确的数据。在智能家居系统中,集成化传感器可实时监测室内的温度、湿度、光照等环境参数,根据这些数据自动调节家电设备的运行状态,为用户营造出舒适、便捷的居住环境。从成本角度来看,微型化与集成化有助于降低生产成本。随着芯片制造技术的不断...
  • 6
    2025 - 02 - 05
    一、引言1.1 研究背景与目的在工业自动化进程不断加速的当下,激光位移传感器作为关键测量设备,凭借其高精度、非接触、高响应速度等突出优势,在工业制造、汽车生产、航空航天等众多领域得到广泛应用。从精密零件的尺寸检测,到大型机械的装配定位,再到生产线上的实时监测,激光位移传感器都发挥着不可或缺的作用,为提升产品质量、提高生产效率、保障生产安全提供了坚实支撑。基恩士作为传感器领域的知名品牌,其 LK-H/LK-G5000 系列激光位移传感器备受关注。该系列产品融合先进技术,具备卓越性能,在市场上占据重要地位。深入研究这一系列产品,能够使我们全面掌握其技术特性、应用场景以及市场表现,为相关行业的技术选型、产品研发、生产优化等提供有力参考,同时也有助于推动激光位移传感器技术的进一步发展与创新。 1.2 研究方法与数据来源本次研究主要采用了文献研究法,广泛查阅了基恩士官方网站发布的产品资料、技术文档、应用案例,以及行业权威报告、学术期刊论文等,获取了关于 LK-H/LK-G5000 系列激光位移传感器的一手信息和专业分析。同时,运用案例分析法,对该系列产品在不同行业的实际应用案例进行深入剖析,总结其应用效果与优势,为研究提供了实践依据。此外,还参考了相关的市场调研报告,了解了激光位移传感器市场的整体发展趋势和竞争格局,以便更全面地评估该系列产品的市场地位与前景。 二、基恩士...
  • 7
    2023 - 03 - 07
    本次应用报告旨在介绍超声波测距传感器在锂电池生产过程中测量卷绕直径的应用情况。首先,本文将介绍超声波测距传感器的基本工作原理和特点,然后详细介绍其在锂电池生产中的应用情况,并对其应用效果进行评估和总结。一、超声波测距传感器的基本工作原理和特点超声波测距传感器是一种通过超声波测量距离的传感器,其测量原理非常简单,就是利用超声波在空气中的传播速度快,而且与环境中的温度、湿度等因素无关的特点。具体来说,超声波测距传感器通过发射超声波信号,当这些信号遇到物体时就会反射回来,传感器通过感受这些反射信号的到达时间,从而计算出物体与传感器之间的距离。超声波测距传感器具有响应速度快、距离测量范围广、测量精度高和使用方便等特点。因此,在工业自动化、机器人、汽车和航空等领域已经广泛应用。二、超声波测距传感器在锂电池生产中的应用锂电池的核心部件是电芯,而电芯的生产过程中就需要进行锂电池卷绕。卷绕的直径大小对于电芯的性能有很大的影响。因此,测量卷绕直径是电芯生产过程中非常重要的环节。传统的测量方法是利用拉尺、卡尺等工具进行物理测量,但是由于电芯内部结构复杂、精度要求高、测量效率低等因素,往往会出现误差较大的情况。超声波测距传感器可以很好地解决这个问题。具体来说,在电芯卷绕时,只需要将超声波测距传感器置于卷绕机上方,然后通过发射超声波信号测量卷绕轴的直径大小即可。由于超声波的反射信号可以穿透物体,因此不会对...
  • 8
    2025 - 01 - 14
    一、引言:解锁工业测量新 “视” 界在工业测量的广袤天地里,精度与可靠性犹如基石,支撑着生产的每一个环节。今天,我们将为您揭开 HC26 系列激光位移传感器的神秘面纱,它宛如一位精准的 “测量大师”,正悄然改变着工业测量的格局。从精密制造到智能检测,HC26 系列凭借其卓越性能,成为众多行业的得力助手。想知道它是如何做到的吗?让我们一同深入探寻。二、HC26 系列:性能优势大揭秘(一)超高集成,小巧灵活HC26 系列采用一体式机身设计,展现出令人惊叹的超高集成度 。其身形小巧玲珑,宛如工业领域的 “灵动精灵”,能够轻松适配各种复杂环境。无论是狭窄的机械内部空间,还是对安装空间要求苛刻的自动化生产线,它都能巧妙融入,为测量工作提供便利。这种紧凑的设计不仅节省了宝贵的安装空间,还简化了安装流程,大大提高了工作效率。(二)智能调光,精准测量光亮自动调节功能是 HC26 系列的一大亮点。它如同一位敏锐的观察者,能够实时感测被测表面的情况,并将激光强度精准控制到最佳状态。在面对不同材质、颜色和粗糙度的被测物体时,该功能确保了激光始终以最适宜的强度照射,从而实现稳定且精准的测量。这一特性不仅提升了测量精度,还拓宽了传感器的应用范围,使其在各种复杂工况下都能应对自如。(三)防护卓越,适应严苛具备 IP67 防护等级的 HC26 系列,犹如一位身披坚固铠甲的勇士,无惧恶劣环境的挑战。在潮湿的环境中...
Message 最新动态
案例应用 | 基于光谱共焦技术的DPC陶瓷基板金属层测厚方案 2025 - 03 - 06 背景与挑战随着电子封装技术的快速发展,直接镀铜陶瓷基板(DPC)因具备优异的导热性、机械强度及耐高温性能,被广泛应用于大功率LED、IGBT模块等领域。然而,其表面金属镀层的厚度均匀性直接影响器件的散热效率与可靠性。某客户需对一批DPC基板进行全检,要求**在正反面各选取10个金属块(含2个重复基准点)**进行高精度厚度测量,并同步获取表面轮廓与中心区高度数据,以满足严格的工艺质量控制标准。解决方案针对客户需求,我们采用LTC1200系列光谱共焦传感器(配套高精度运动平台与测控软件),设计了一套非接触式三维测厚方案:设备选型量程:±600μm(覆盖金属层典型厚度范围)重复精度:0.03μm(静态,确保基准点数据一致性)线性误差:<±0.3μm(满足亚微米级公差要求)采样频率:10kHz(高速扫描提升检测效率)选用LTC1200B型号传感器(光斑直径约19μm),兼顾测量精度与金属表面反射特性需求,其技术参数如下:搭配亚微米级定位平台,确保扫描路径精确控制。基准点设定以陶瓷基板裸露区域作为基准面,在正反面各设置2个重复测量点,通过传感器实时比对基准高度数据,消除基板翘曲或装夹误差对厚度计算的影响。实施流程数据采集:沿预设路径扫描金属块,同步记录轮廓点云与中心区高度(软件自动拟合最高点作为厚度参考值)。厚度计算:基于公式:\text{金属层厚度} = \text{金...
国产LTP150与进口LK-G150激光位移传感器性能对比:突破技术壁垒,彰显本土创新优势 2025 - 03 - 05 在工业自动化领域,激光位移传感器是精密测量的核心器件。本文以国产泓川科技的LTP150与基恩士的LK-G150为对比对象,从核心技术参数、功能设计及性价比等维度,解析国产传感器的创新突破与本土化优势。一、核心参数对比:性能旗鼓相当,国产线性度更优精度与稳定性LTP150的线性度为±0.02%F.S.,优于LK-G150的±0.05%F.S.,表明其全量程范围内的测量一致性更佳。重复精度方面,LK-G150(0.5μm)略高于LTP150(1.2μm),但需注意LK-G150数据基于4096次平均化处理,而LTP150在无平均条件下的65536次采样仍保持1.2μm偏差,实际动态场景下稳定性更可靠。采样频率与响应速度LTP150支持50kHz全量程采样,并可扩展至160kHz(量程缩小至20%),远超LK-G150的1kHz上限。高频采样能力使其在高速生产线(如电池极片、半导体晶圆检测)中可捕捉更多细节,避免数据遗漏。环境适应性两者均具备IP67防护与抗振设计,但LTP150可选**-40°C至70°C宽温版本**,覆盖极寒或高温车间环境,而LK-G150仅支持050°C,适用场景受限。以下是 LTP150(泓川科技) 与 LK-G150(基恩士) 激光位移传感器的核心参数对比表格,重点突出国产...
精度之王正面对决:国产泓川LTP025对比基恩士LK-G10激光位移传感器深度解析 2025 - 03 - 05 一、核心参数对比表参数项LK-G10(基恩士)LTP025(国产)参考距离10 mm25 mm(适用远距检测)检测范围±1 mm±1 mm线性度误差±0.03% F.S.±0.03% F.S.(同级性能)重复精度0.02 μm0.05 μm最高采样频率50 kHz(20 μs)160 kHz(6.25 μs可扩展)激光类型红色(655 nm,1类)蓝色(405 nm,2类)光源功率0.3 mW4.9 mW(穿透性更强)防护等级IP67IP67工作温度0+50°C0+50°C(可定制-4070°C)通讯接口未标注(依赖控制器)RS485、TCP/IP、开发包支持系统集成需外置控制器独立一体机(无需控制器)重量190 g372 g 二、性能与应用场景分析1. 正反射测量能力共同优势: 两款传感器均支持正反射模式,可精准测量镜面(如金属抛光件)和透明/半透明材料(如玻璃、薄膜),突破传统三角法传感器因漫反射失效的限制。差异点:LK-G10:采用655 nm红光,适用于常规镜面材料;LTP025:405 nm蓝光波长更短,对透明材质(如手机玻璃盖板)的穿透力更强,且光斑直径更小(Φ18 μm vs Φ20 μm),适合微结构检测。2. 精度与速度LK-G10:精度王者:0.02 μm的重复精度为...
Copyright ©2005 - 2013 无锡泓川科技有限公司

1

犀牛云提供企业云服务
Our Link
X
3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 0510-88155119
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开