服务热线: 0510-88155119
13301510675@163.com
Language
项目案例 Case
Case 激光位移

激光位移传感器测量精度的“隐形杀手”——表面粗糙度

日期: 2025-01-08
浏览次数: 7

激光位移传感器,精度至上?

在当今科技飞速发展的时代,激光位移传感器宛如一颗璀璨的明星,在众多领域中散发着耀眼光芒。从高端精密的航空航天制造,到与我们日常生活息息相关的汽车生产;从微观精细的电子元件加工,再到大规模的工业自动化生产线,激光位移传感器都扮演着不可或缺的关键角色。它凭借着非接触式测量的独特优势,如同一位敏锐的 “观察者”,能够在不触碰物体的前提下,精准捕捉物体位置与位移的细微变化,为生产制造和科学研究提供至关重要的数据支持。
然而,就如同精密的钟表不容许哪怕微小的零件瑕疵,激光位移传感器对精度的要求亦是近乎苛刻。在实际应用场景中,诸多因素都可能如潜藏的 “暗流”,悄然影响着传感器的测量精度,其中表面粗糙度这一因素的影响尤为突出。想象一下,当激光束投射到物体表面,若表面如镜子般光滑平整,激光反射就如同整齐划一的士兵,能准确反馈信息;可要是表面粗糙不堪,激光反射就会变得杂乱无章,进而导致测量误差的产生。所以,深入探究表面粗糙度对激光位移传感器测量精度的影响,并探寻有效的补偿方法,已然成为当下一个极具价值的研究课题,这不仅关乎技术的精进,更与众多行业的高质量发展紧密相连。

一、激光位移传感器的工作原理

激光位移传感器的工作原理主要基于激光三角测量法或激光回波分析法。在激光三角测量法中,激光器发射出一束激光,经透镜聚焦后射向被测物体表面,物体表面反射的光线再通过接收透镜,成像在光电探测器(如 CCD 或 CMOS)上。当物体表面位置发生变化时,反射光在光电探测器上的成像位置也会相应改变,利用三角函数关系,就能精确计算出物体与传感器之间的距离,这种方法适用于高精度、短距离的测量场景。

激光位移传感器测量精度的“隐形杀手”——表面粗糙度

而激光回波分析法则多用于远距离测量,传感器内部的激光发射器每秒向检测对象发射大量激光脉冲,处理器计算激光脉冲到达检测对象并返回接收器所需的时间,根据光速与往返时间,即可算出距离值,其输出值通常是数千次测量结果的平均输出,以保障一定的测量精度。
凭借这些原理,激光位移传感器具备了诸多优势。它能实现非接触式测量,避免对被测物体造成损伤,这在测量精密零部件、易损材料或高速运动物体时尤为关键;测量精度极高,可达微米甚至纳米级,能满足航空航天、精密制造等高端领域对精度的严苛要求;响应速度快,可瞬间捕捉物体的位移变化,适用于动态测量场合;并且传感器体积小巧、易于集成,方便安装在各类设备上,为自动化生产线、机器人等系统提供精准的位移监测。

二、表面粗糙度为何会影响测量精度

(一)粗糙表面的光反射 “乱象”

当激光束投射到粗糙表面时,就如同平静的湖面被搅起无数涟漪。由于表面存在着诸多微小的凹凸不平,激光在这些微观结构上发生反射时,不再遵循规整的路径。光线会向四面八方散射开来,形成复杂的反射光线交织状态。
从光的反射原理来看,光滑表面能够使激光按照入射角等于反射角的规律进行较为有序的反射,反射光线相对集中,传感器接收后能准确还原信息。但粗糙表面使得光线在不同角度的微小平面上反射,反射光线强度分布不均,角度也各异,导致传感器接收到的光信号杂乱无章,难以精准判断物体的真实位置,从而不可避免地产生测量误差。

(二)误差产生公式详解

测量误差的产生可以用公式 来表示。其中,

x0是摄像头上相光点的位移,它反映了光信号在接收端的变化情况; β为入射光线和反射光线的夹角,
φ
为摄像机和反射光线的夹角,这两个角度参数决定了光线传播的几何路径; 为漫反射光线到接收透镜的距离, 为接收透镜到相机光敏面的距离,它们影响着光信号的聚焦与成像效果; 为理想条件下位移量,是在假设表面光滑无粗糙度影响时激光位移传感器理论上应测得的位移。

激光位移传感器测量精度的“隐形杀手”——表面粗糙度


当表面粗糙度存在时,实际反射光线的混乱导致 与理想状态下的位移对应关系失衡,进而通过公式计算得出的测量值与真实值出现偏差,该偏差值 即为表面粗糙度引入的测量误差,清晰地量化了粗糙度与测量误差之间的内在联系。


激光位移传感器测量精度的“隐形杀手”——表面粗糙度


激光位移传感器测量精度的“隐形杀手”——表面粗糙度


三、深度剖析:具体影响因素

(一)粗糙度参数:Ra、Rz、Ry 的不同 “威力”

在表面粗糙度的评定中,常用的参数有轮廓算术平均偏差 Ra、微观不平度十点高度 Rz、轮廓最大高度 Ry,它们从不同维度反映了表面的微观起伏特征,且对激光位移传感器的测量精度有着各异的影响 “威力”。
Ra 是在取样长度内,轮廓偏距绝对值的算术平均值,它就像是对表面微观起伏的一种 “平均考量”,能较为综合地反映表面的粗糙程度。当 Ra 值增大时,意味着表面微观峰谷的平均落差变大,激光在反射过程中受到的干扰增多,反射光线的分散程度加剧,使得传感器接收到的光信号波动更大,从而导致测量精度下降。例如在一些精密机械加工的轴类零件测量中,若轴表面的 Ra 从 0.8μm 增加到 3.2μm,测量误差可能会从 ±5μm 增大到 ±15μm。
Rz 表示在取样长度内最大的轮廓峰高的平均值与五个最大的轮廓谷深的平均值之和,它侧重于突出表面较大起伏的特征。相较于 Ra,Rz 对测量精度的影响更为局部化和极端化。当 Rz 较大时,那些高耸的轮廓峰和深邃的轮廓谷会使激光产生强烈的散射和遮挡效应,传感器可能会因接收不到完整、准确的反射光而出现较大偏差,尤其在测量微小位移变化时,这种偏差会被放大。
Ry 则是轮廓峰顶线和谷底线之间的距离,它代表了表面起伏的最大跨度。在一些对表面质量要求极高的光学元件加工检测中,Ry 的微小变化都可能让激光反射路径发生显著改变,进而严重影响测量精度,因为哪怕是个别极高或极低的峰谷,都足以扰乱激光的正常反射逻辑,使测量数据偏离真实值。

(二)测量距离与粗糙度的 “微妙配合”

测量距离与表面粗糙度之间存在着一种微妙的相互作用关系,共同影响着激光位移传感器的测量精度。当测量距离较近时,激光束覆盖的被测表面区域相对较小,表面粗糙度的局部特征对激光反射的影响占主导。此时,即使表面粗糙度数值稍大,由于激光能够较为集中地捕捉到局部微观结构的反射光,传感器仍能凭借高分辨率的探测器对反射光变化进行相对精准的分析,测量精度受粗糙度影响的程度相对有限。

激光位移传感器测量精度的“隐形杀手”——表面粗糙度

随着测量距离逐渐增大,激光束扩散开来,覆盖的表面区域变广,表面粗糙度的整体统计特征开始凸显。一方面,远距离传输使得激光能量有所衰减,反射光强度变弱,传感器接收信号的难度增加;另一方面,更大范围的粗糙表面带来更多样化、更杂乱的反射光线方向,这些光线在长距离传播过程中进一步分散,导致传感器接收到的有效信号比例降低,测量误差随之增大。例如在实际实验中,使用同一激光位移传感器对粗糙度为 Ra 1.6μm 的工件进行测量,当测量距离从 50mm 增加到 150mm 时,测量误差从 ±8μm 急剧上升到 ±20μm,清晰地展现出测量距离变化对粗糙度影响精度的放大效应。

(三)工件材质:反光与吸光的 “博弈”

不同材质的工件对激光具有截然不同的反射和吸收特性,这在与表面粗糙度相互交织时,极大地改变了测量精度的变化格局。金属材质工件,如铝合金、不锈钢等,通常具有较高的反射率,激光照射时大部分能量能够被反射回去。然而,当表面粗糙时,金属表面微观的凹凸结构会使反射光在各个微小面之间多次反射、散射,形成复杂的反射光场。一方面,部分原本应直接反射回传感器的光线因散射而偏离路径,造成能量损失,传感器接收光强减弱;另一方面,多次反射产生的杂散光干扰了正常反射光信号的识别,使得测量精度大打折扣。
塑料材质工件的反射特性相对复杂,一些普通塑料由于内部结构疏松,对激光的吸收相对较多,反射光强度本就较弱。在粗糙表面情况下,激光不仅容易被表面微观结构散射,还会因材料内部吸收进一步衰减,导致传感器接收到的信号微弱且杂乱,测量精度难以保证。例如在对注塑成型的塑料零件进行测量时,若零件表面粗糙度不佳,测量数据往往会出现较大波动,重复性变差。
陶瓷材质工件具有高硬度、高耐磨性等特点,其表面加工后的粗糙度状态相对稳定,但由于陶瓷材料的晶体结构,对激光的反射具有一定的方向性。当表面存在粗糙度时,反射光的方向性被破坏,在特定角度测量时可能出现反射光 “缺失” 现象,即传感器接收不到足够强度的反射光,从而引发测量误差,尤其是在对陶瓷精密部件进行高精度测量时,这种因材质与粗糙度结合导致的问题更为突出。

四、实战!误差测量实验全揭秘

(一)实验装置 “大起底”

在探究表面粗糙度对激光位移传感器测量精度影响的征程中,一套精心搭建的实验装置起着基石般的关键作用。
高精度的激光干涉仪宛如一位精准的 “裁判”,它以极高的精度标准来衡量位移变化,为整个实验提供可靠的基准数据,让其他测量数据有了对比的 “标杆”。激光位移传感器则是我们本次研究的 “主角”,它凭借着自身敏锐的 “感知力”,全力捕捉被测物体的位移信息,其测量结果将与激光干涉仪的数据相互印证,以剖析误差的奥秘。
不同粗糙度参数的对比样块,恰似一本本 “实物教材”,涵盖了从较为光滑到粗糙程度各异的表面状态,它们是引发测量误差变化的关键因素,通过更换不同样块,能直观呈现粗糙度对测量精度的影响差异。三轴机床如同一个稳定的 “操作平台”,为传感器和样块提供精准的位移运动,确保测量过程在不同位置、不同方向上有序进行,模拟出多样的测量场景。这些装置各司其职又紧密配合,共同为实验的顺利开展保驾护航。

(二)实验步骤 “分步走”

实验开始前,首先要将激光位移传感器通过特制的夹具和磁吸稳稳固定在三轴机床的 z 轴上,这一步如同为传感器找到了一个稳固的 “观测位”,随后精细调整 z 轴移动,让激光位移传感器精准定位到最佳测量位置,为后续精准测量奠定基础。紧接着,小心安装激光干涉仪,仔细调整镜组,直至其测量信号稳定、正常显示,确保这个 “裁判” 能准确无误地记录数据。
准备就绪后,依次将 5 个粗糙度对比样块轻放在测量台上,它们即将接受激光的 “审视”。启动机床,使其沿着 z 轴方向和 x 轴方向各移动一次轨迹,当沿 x 轴方向移动时,位移传感器恰好处于最高精度测量点,此点如同传感器的 “敏感区”,能捕捉到最精准的数据,将此刻作为位移传感器默认初始点,意义重大。在整个过程中,分别使用高精度的数据记录设备,一丝不苟地记录激光传感器的输出数据以及激光干涉仪的输出数据,这些数据后续将成为揭开误差面纱的关键线索,每一个步骤都不容有失,共同推动着实验向揭示真相迈进。

(三)数据采集与分析 “见真章”

通过严谨的实验操作,采集到的位移数据被精心绘制成图表。从图表中可以清晰地洞察到,随着表面粗糙度参数的逐步增大,激光位移传感器的测量误差呈现出明显的上升趋势,就像一条上扬的曲线,直观地揭示了二者之间紧密的关联。
以 Ra 值为例,当 Ra 从 0.4μm 攀升至 3.2μm 时,测量误差在某些测量点甚至从 ±5μm 急剧扩大到 ±15μm,这一显著变化如同敲响的警钟,突显了粗糙度对精度影响的严重性。进一步深入分析,还能发现不同测量方向上,误差变化也存在着细微差异,这背后或许隐藏着光反射角度、机床运动精度等多重因素的交织影响,为后续深入探究提供了新的思考方向,促使我们不断挖掘数据背后的深层奥秘,寻求更精准的补偿策略。

五、误差补偿 “绝技” 登场

(一)拟合误差模型:寻找规律

在积累了大量从实验中精心采集而来的位移数据后,就如同拥有了开启宝藏之门的众多钥匙,接下来的关键步骤便是通过线性拟合构建误差模型。以不同粗糙度的对比样块为线索,将每个样块在不同测量位置所对应的测量误差与位移数据进行细致梳理。
当粗糙度为 0.4μm 时,通过对一系列位移点测量误差的分析,利用专业的数据拟合软件或数学算法,得出线性方程 Err = 0.0051x + 0.02919。其中,一次项系数 0.0051 反映了误差随位移变化的速率,截距 0.02919 则代表了在初始位置或位移为零时的固有误差。同理,对于粗糙度为 0.8μm 的情况,拟合得到 Err = -0.00478x + 0.02406,负的一次项系数表明误差变化趋势与前者不同,这背后是不同粗糙度下激光反射特性差异在数据上的直观体现。针对各个粗糙度样块,都构建出类似的精准模型,这些模型如同精密的导航仪,为后续补偿误差指明方向,让我们能依据位移快速预估误差大小,提前做好修正准备。

(二)补偿策略实施:精准 “纠错”

当有了量身定制的误差模型后,在实际测量场景中对激光位移传感器进行补偿操作就如同为精准测量披上了一层坚实的 “防护甲”。在每一次测量获取到传感器的原始测量值后,依据当前测量条件所对应的粗糙度,迅速从已建立的误差模型库中调取相应模型,计算出此刻的预估误差值。
例如,测量一个表面粗糙度经检测为 1.6μm 的工件,传感器测得位移为 5mm,代入对应的误差模型 Err = 0.00286x - 0.00846,算出误差约为 0.00624mm。随后在原始测量值中减去这一误差,得到补偿后的精准测量值。经过大量实际测量案例验证,未补偿前测量精度可能在 ±15μm 左右波动,而采用误差补偿策略后,精度如同被精准校准,稳定提升到 ±7μm 以内,这一显著提升有力地证明了误差补偿的强大功效,让激光位移传感器在面对复杂表面粗糙度情况时,依然能精准 “洞察” 物体位移,为众多精密制造、质量检测等领域提供可靠的数据支撑。

六、工业应用中的卓越成效

在机床在机测量领域,某精密零部件加工车间之前使用激光位移传感器对加工中的轴类零件进行尺寸监测时,由于零件表面粗糙度在 Ra 1.2 - 2.5μm 之间,测量误差时常达到 ±12μm,导致加工精度难以把控,废品率居高不下。采用误差补偿技术后,依据现场测量的粗糙度实时调取对应误差模型进行补偿,测量精度显著提升至 ±7μm 以内,加工废品率降低了约 60%,大大提高了生产效率与产品质量,节约了成本。
在精密零部件检测环节,如航空航天发动机叶片的检测工序,叶片表面经过特殊处理,粗糙度复杂且对测量精度要求极高。未补偿前,传感器受粗糙度影响,测量微小位移变化时误差可达 ±18μm,难以满足高精度检测需求。引入补偿策略后,针对不同部位的粗糙度精准补偿,测量精度稳定在 ±8μm,确保了叶片检测的准确性,为航空发动机的高性能与可靠性提供了坚实保障。
汽车制造生产线中,车身焊接过程需要对零部件拼接处的间隙与位置进行高精度测量,车身板材表面粗糙度因冲压、涂装工艺不同而各异。在某汽车厂,原激光位移传感器测量误差在 ±10 - 15μm 波动,使得焊接后车身局部出现缝隙不均等质量问题。运用补偿方案后,精度提升至 ±7μm,焊接质量大幅改善,车身整体结构强度与外观平整度都得到显著提升,减少了后续返工,提升了整车制造品质。

七、未来展望:精度提升永不止步

展望未来,随着科技的持续迅猛发展,激光位移传感器在应对表面粗糙度挑战、提升测量精度方面将迎来更为广阔的天地。
在新材料领域,科学家们正在潜心研发具有特殊光学性能的新型材料,这些材料一旦问世并应用于传感器的光学元件或被测物体表面涂层,有望巧妙改变激光与物质的相互作用方式。例如,具有超疏水、超亲油特性的纳米涂层,不仅能使粗糙表面在微观层面变得相对 “规整”,减少激光散射,还能增强反射光的方向性,让传感器接收的光信号更加清晰、稳定,进而降低粗糙度对测量精度的干扰。
从新工艺角度出发,超精密加工技术的不断精进令人瞩目。通过原子级别的加工工艺,能够制造出表面粗糙度近乎为零的工件,从根源上削弱粗糙度因素的影响。同时,在传感器制造工艺上,采用分子束外延、光刻蚀等前沿技术,可优化传感器内部光学系统的平整度与光洁度,提升激光发射与接收的精度,为高精度测量奠定坚实基础。
智能算法的蓬勃发展更是为精度提升注入强大动力。机器学习算法能够对海量的测量数据进行深度挖掘,自主学习不同粗糙度、材质、测量环境下的误差规律,构建出更为复杂、精准的动态误差模型。在实际测量中,传感器可依据实时采集的环境与被测物体信息,瞬间调用最优模型进行误差补偿,实现测量精度的自适应优化。而且,随着人工智能与物联网技术的深度融合,激光位移传感器将融入智能工厂的庞大网络,实时共享数据、协同工作,根据生产线的整体需求动态调整测量精度,全方位满足未来工业制造、科学研究等领域对高精度位移测量日益严苛的需求,持续推动各行业迈向更高的质量巅峰。


Case / 相关推荐
2025 - 01 - 08
点击次数: 7
激光位移传感器,精度至上?在当今科技飞速发展的时代,激光位移传感器宛如一颗璀璨的明星,在众多领域中散发着耀眼光芒。从高端精密的航空航天制造,到与我们日常生活息息相关的汽车生产;从微观精细的电子元件加工,再到大规模的工业自动化生产线,激光位移传感器都扮演着不可或缺的关键角色。它凭借着非接触式测量的独特优势,如同一位敏锐的 “观察者”,能够在不触碰物体的前提下,精准捕捉物体位置与位移的细微变化,为生产...
2025 - 01 - 05
点击次数: 5
摘要:本文针对板式换热器板片在压制成型后可能存在的减薄(缩颈)和裂纹等质量问题,设计并实现了一种基于激光位移传感技术的在线自动检测系统。该系统采用高精度、高动态响应的激光位移传感器,对板片各点厚度进行实时测量,并通过数据比对分析,准确判断板片质量是否合格。实验验证表明,该系统能够有效检测不同波纹形状的减薄量和波纹深度,显著提升检测精度和效率,为板式换热器板片的智能化生产提供了有力支持。关键词:激光...
2025 - 01 - 05
点击次数: 4
在核电领域,安全壳宛如一位忠诚的卫士,肩负着守护核反应堆的重任,是防止放射性物质泄漏的关键防线。它的结构复杂且庞大,内部环境严苛,一旦出现安全隐患,后果不堪设想。而安全壳鼓包现象,便是潜在隐患之一。鼓包通常是由于内部压力变化、结构老化、材料疲劳等多种因素导致的。这些鼓包可能起初微不足道,但随着时间推移,若不及时察觉并处理,极有可能逐渐扩大,进而削弱安全壳的整体结构强度,使得放射性物质泄漏风险大增。...
2024 - 12 - 16
点击次数: 17
随着列车运行速度的不断提升,车轮的磨损问题日益严重,车轮直径的变化对列车运行的安全性和稳定性构成了重大挑战。因此,实现对车轮直径的精确、快速测量成为铁路行业亟待解决的问题。本文将以《一种激光位移传感器动态测量列车车轮直径的新方法》为理论基础,结合LTP450激光位移传感器的技术参数,详细阐述激光位移传感器在列车车轮直径检测中的应用案例,并探讨在新技术发展下的应用扩展。一、测量方案1. 测量原理本案...
2024 - 12 - 05
点击次数: 19
摘要:本文详细介绍了HC m系列激光位移传感器在晶圆生产中的高度测量应用,特别是在面对光滑镜面与粗糙晶圆表面时的稳定输出能力。通过独特的安装角度与宽光斑激光点技术,HC m系列传感器能够精准测量不同表面特性的晶圆高度,为工业生产提供高效、可靠的解决方案。引言:在半导体制造过程中,晶圆的高度测量是确保产品质量与生产效率的关键环节。然而,晶圆表面的多样性,包括光滑镜面与粗糙表面,给传统测量方法带来了巨...
2024 - 11 - 27
点击次数: 12
摘要本文提出了一种基于激光位移传感器的皮带线箱体体积测量方案,通过精心设计的C字形龙门架构和多个激光位移传感器的组合使用,实现了对皮带线上经过的箱体体积的精确测量。该方案结合了光电传感器和2D视觉相机,确保了箱体在测量过程中的正确姿态,并通过复杂的算法和数据处理技术,得出了高精度的测量结果。1. 引言在现代物流和制造业中,对箱体体积的精确测量对于仓储管理、货物配载和物流优化具有重要意义。传统的体积...
About Us
关于泓川科技
专业从事激光位移传感器,激光焊缝跟踪系统研发及销售的科技公司
中国 · 无锡 · 总部地址:无锡新吴区天山路6号
销售热线:0510-88155119 
图文传真:0510-88152650
Working Time
我们的工作时间
周一至周五:8:00-18:00
周六至周日:9:00-15:00
Shown 企业秀 More
  • 1
    2023 - 09 - 20
    首先,让我们对TOF进行一次短暂的“速读”——它全称叫'time-of-flight',中文怎么说呢?风格洒脱地称之为“飞行时间”。你没听错,就是“飞行时间”。所有的颠覆与创新始于赤裸裸的想象,对吧?再来回过头,看看我们的主角TOF激光测距传感器。激光这东西,我想你肯定不陌生。科幻大片,医美广告里都被频繁提及。对这位明星,我们暂时按下暂停键, 我们聊一聊测距传感器——那可是能把复杂的三维世界,硬是证明成一串串精准数据的硬核工具。当然,他俩的组合,并不是偶然撞壁造成的火花。在“鹰眼”TOF的身上,激光变得更加酷炫,传感器技术也变得更为深邃。他们共舞的主线,就是光的飞行时间。想象一下,要在现实世界计算出光从物体发射出来,然后反射回传感器的时间。你愣了一秒,觉得好像进入了'黑洞'的领域。实则不然,TOF激光测距传感器就是这样“耳提面命”。它以光速旅行者的姿态,穿越空间,告诉我们物体与之间的距离。亲,你有听说过光速吗?大约每秒走30万公里哦,这个速度足够你在一秒钟内去绕地球七点五圈了!TOF激光测距传感器就是他们利用这么一个迅疾的光速,再加上高精度的时钟,来高效精确地计算出飞行时间并转化为距离数据。小编想说,TOF不仅玩科技,他更玩智谋,战胜了同类的超声波、红外线等测距设备。毕竟,被物的颜色、亮度、表面材质,或者环境的温湿度对他来说都不构成锁链。准确到“下毛...
  • 2
    2023 - 09 - 25
    在高精度的生产工序中,薄膜偏差是一项极为重要的控制指标。由于微观材料结构的敏感性,稍有偏差就可能会导致产品的细微变形,从而引发性能下降、使用寿命缩短等一系列问题。因此,对薄膜偏差的精确检测与实时调控具有至关重要的意义。对于这样的需求,光谱共焦位移传感器便能发挥出它重要的作用。通过实现对薄膜厚度的非接触式实时监视,它可以有效地预防或及时地调整可能发生的偏差,提高生产过程中的精准度和稳定性。原理上,光谱共焦位移传感器利用光源通过物体后的干涉进行测量,借助高精度的光学系统和高灵敏的光电检测设备,最终得出偏差情况。另一方面,光谱共焦位移传感器具有小型化的优势。它采用集成设计,尺寸小巧,可以安装在设备内的有限空间中,且不会影响主机性能。这大大扩展了其使用场景,让即使是较为狭小的环境也能实现精确的监控。总结来说,光谱共焦位移传感器代表着未来高精密度生产领域的主流趋。其不仅具备高精度、快反应、难以受到环境干扰等优点,还由于其小型化、适用于狭窄环境等特性,使其逐渐被更多的高科技领域所接受和采纳。
  • 3
    2024 - 03 - 05
    激光三角测量法:精确测量透明物体的科技新突破在精密测量领域,激光三角测量法已成为一种非常重要的技术手段。这种测量方法尤其适用于透明物体的测量,因为它可以有效地解决透明物体测量中的诸多难题。本文将详细介绍激光三角测量法的原理、步骤,以及折射率校正在此过程中所起到的关键作用。一、激光三角测量法的原理激光三角测量法是一种基于光学三角测量原理的非接触式测量方法。其基本原理是:半导体激光器发出的激光束照射在目标物体上,接收器透镜聚集目标物体反射的光线并聚焦到感光元件上。当目标物体与测量设备之间的距离发生改变时,通过接收器透镜的反射光的位置也会相应改变,光线聚焦在感光元件上的部分也会有所不同。通过精确测量这些变化,就可以得出目标物体的位移、形状等参数。二、激光三角测量法的步骤设定参照距离:首先,需要设定一个参照距离,即在此距离下,激光束与感光元件之间的位置关系已知且稳定。照射激光:然后,通过半导体激光器发出激光束,照射在待测的透明物体上。接收反射光:接收器透镜会聚集从透明物体反射回来的光线,并将其聚焦到感光元件上。分析数据:当透明物体移动或形状发生变化时,反射光在感光元件上的位置也会发生变化。通过精确分析这些变化,就可以得出透明物体的位移、形状等参数。三、折射率校正的作用在测量透明物体时,一个关键的问题是需要考虑光的折射现象。由于透明物体的折射率与空气不同,光线在从空气进入透明物体时会发生折射...
  • 4
    2022 - 12 - 03
    激光测距传感器的功能,你了解多少呢?大家好,我是无锡宏川传感学堂的李同学。激光测距传感器的功能可分为距离测量和窗口测量。其中距离测量在测距应用中传感器可以随时投入使用。直接给出与物体之间的距离。测量值可用于系统控制或者物体的精准定位。此外还可以选择对数字量模拟,量输出进行调整。如果需要检测尺寸较小的物体。可直接进行窗口测量。通过对参照物进行自学习,传感器可直接测得与标称尺寸的偏差。在这种情况下,数字量输出也可以进行相应的参数进行。除了传感器的尺寸和测量范围。光斑的形状也尤其重要,点击光代表精准聚焦。能精确测量小尺寸的物体。线激光能可靠测量粗糙度比较大的表面积。带纹理的彩色表面。在光泽不均匀或极其粗糙的表面上也能进行稳定的测量。
  • 5
    2023 - 10 - 01
    '新吴科之匠',泓川科技有限公司全新打造的传感器新标杆,我们凝聚高端技术力量,专注于高精度、高性能的激光位移传感器LTP系列,光谱共焦传感器LTC系列,白光干涉测厚传感器,线光谱共焦传感器,以及3D结构光和3D线激光。 强大的研发能力和对细节无穷追求,让我们的产品在每个细微处都彰显出卓越品质。'新吴科之匠'不仅寓意着尖端科技的集中体现,更代表着对品质的极致追求。我们相信,只有最好,才能过硬。
  • 6
    2023 - 09 - 26
    1 激光光热技术测厚:原理是利用激光照射材料,产生的热量使材料产生变化,再通过光学方式检测这种变化以确定材料的厚度。优点是非接触式、无损伤、准确;缺点也是显而易见的,对于颜色、形状、表面纹理等都有不同程度的影响。2 白光干涉测厚:原理是使用白光干涉仪产生干涉图案,然后通过分析干涉图案得材料厚度。优点是测量精度高、灵敏度高;缺点是设备复杂且成本高昂。3 激光干涉测厚:主要是利用激光波的相干性,测量物体的干涉条纹来反推出物体的厚度。优点是测量精度高、速度快;但激光源的稳定性和调节技术要求比较高。4 光谱共聚焦测厚:该方法是根据材料对不同波长光的反射、折射和吸收特性,同时探测所有波长的光谱,从而计算出材料厚度。优点是测量准确、适用范围广;缺点是设备复杂、操作要求高。5 椭圆偏光法测厚:原理是利用光的偏振特性对材料进行测量,根据计算出材料厚度。优点是接触、无损伤,但适用范围有限。6 红外吸收法测厚:红外吸收法是指通过测定红外光在材料中吸收的程度来推断优点是测量过程简单、直观、精度高;缺点是对材料的红外吸收特性有严格要求。7 X/β射线测厚:主要是利用X射线或者β射线穿透材料时,穿透的射线强度和物体的厚度之间存在一定的关系。优点是精确、可靠;缺点是人体安全需要考虑。8 电容测厚:原理是利用两极板间的电容量与介质厚度成正比,通过测量电容量来测量厚度。优点是设备简单、便宜;缺点是精度较低。9 反...
  • 7
    2024 - 03 - 05
    在测量被透明物体覆盖的目标时,环境照明补偿和透视测量是提高测量准确性的重要手段。这些技术的应用,在智能手机等电子设备的制造过程中,具有至关重要的作用。首先,让我们来探讨一下环境照明补偿的作用。在生产线环境中,照明条件往往并不稳定,这会对测量精度产生严重影响。环境照明补偿技术通过自动调整传感器参数,以补偿外部光照条件的变化,使得测量系统能在不同的照明条件下都能保持稳定的测量性能。这就使得我们在测量被透明物体(如手机屏幕)覆盖的目标时,能够得到更为准确的结果。其次,透视测量技术则能够解决透明物体对测量造成的干扰。由于透明物体会让部分光线穿过,使得传统的测量技术难以准确捕捉目标的位置和形状。而透视测量技术则能够通过特殊的光学设计和算法处理,使得传感器能够“看透”透明物体,直接对其背后的目标进行测量。这样,我们就可以在不接触目标的情况下,对其进行准确的测量。在智能手机等电子设备的制造过程中,这两种技术都有着广泛的应用。例如,在手机屏幕的生产过程中,环境照明补偿技术可以帮助我们确保屏幕在各种光线条件下都能显示清晰。而透视测量技术则可以用于测量手机屏幕下的各种元器件,如触摸屏、摄像头等,确保它们的位置和尺寸都符合设计要求。此外,这两种技术还可以结合使用,以提高测量的精度和效率。例如,我们可以先使用透视测量技术确定目标的位置,然后使用环境照明补偿技术对其进行精确测量。这样,我们不仅可以得到更准确...
  • 8
    2022 - 12 - 03
    无论是半导体加工过程中还是锂电池制造过程中总是伴随着腐蚀,高温振动等恶劣环境,为了保证生产的高效稳定,无锡泓川科技推出了多种具有不同钢铁不锈钢金属外壳的激光位移传感器,具有高防护性,可以从容的面对各种复杂的环境。在生产过程中总是在恶劣的环境中进行。在当今的环境中,自动化解决方案有时会暴露在非常困难的生产条件下。而且还必须具有可靠的功能,这对传感器技术来说是一个挑战。无锡泓川科技有限公司广泛的测试程序,确保了我们的激光位移传感器能够承受恶劣的环境要求。例如在电子行业中电子产品在我们日常生活中扮演着重要的角色。无论是在电动巴士和汽车的电池中,还是在太阳能发电模块中。自动化生产在电子工业的许多领域都是非常复杂的。真空和高温环境是随处可见的。使用的化学物质具有腐蚀性。这不仅影响生产条件和机器在许多应用领域,传感器解决方案也面临着新的挑战。那么能满足这些挑战的出色的激光位移传感器是什么样的呢?在某些情况他必须能抗抵抗至少70度到100度的高温。或者他必须能承受真空环境并且具有腐蚀性,化学物质的过程中也能抗拒。他应该有特别耐用的材料制成如不锈钢甚至特氟龙材料。无锡泓川科技有限公司提供范围广泛的激光位移传感器和激光位移传感器技术,尤其适用于恶劣环境。
Message 最新动态
一场关于基恩士光谱共焦传感器:原理、特性与应用的深度全面剖析好文(下) 2025 - 01 - 14 四、与其他品牌光谱共焦传感器对比4.1 性能差异对比4.1.1 精度、稳定性等核心指标对比在精度方面,基恩士光谱共焦传感器展现出卓越的性能。以其超高精度型CL - L(P)015为例,直线性误差可达±0.49µm,这一精度在众多测量任务中都能实现极为精确的测量。相比之下,德国某知名品牌的同类型传感器,其精度虽也能达到较高水平,但在一些对精度要求极高的应用场景中,仍稍逊于基恩士。在测量高精度光学镜片的曲率时,基恩士传感器能够更精确地测量出镜片的微小曲率变化,确保镜片的光学性能符合严格标准。在稳定性上,基恩士光谱共焦传感器同样表现出色。其采用了先进的光学设计和稳定的机械结构,能够有效减少因环境因素和机械振动对测量结果的影响。即使在生产车间等振动较大的环境中,也能保持稳定的测量输出。而法国某品牌的传感器,在稳定性方面则存在一定的不足。在受到轻微振动时,测量结果可能会出现波动,影响测量的准确性和可靠性。在精密机械加工过程中,法国品牌的传感器可能会因为机床的振动而导致测量数据不稳定,需要频繁进行校准和调整,而基恩士传感器则能保持稳定的测量,为生产过程提供可靠的数据支持。响应速度也是衡量光谱共焦传感器性能的重要指标。基恩士光谱共焦传感器在这方面具备快速响应的优势,能够快速捕捉被测物体的位置变化。在对高速运动的物体进行测量时,能够及时反馈物体的位置信息,确保测量的实时性。相比...
一场关于基恩士光谱共焦传感器:原理、特性与应用的深度全面剖析好文(上) 2025 - 01 - 14 一、引言1.1 研究背景与意义在工业制造、科研等众多领域,精密测量技术如同基石,支撑着产品质量的提升与科学研究的深入。光谱共焦传感器作为精密测量领域的关键技术,正以其独特的优势,在诸多行业中发挥着无可替代的作用。它能精确测量物体的位移、厚度、表面轮廓等参数,为生产过程的精确控制与产品质量的严格把控提供了关键数据支持。基恩士作为传感器领域的佼佼者,其推出的光谱共焦传感器在市场上备受瞩目。基恩士光谱共焦传感器凭借卓越的性能,如高精度、高稳定性、快速响应等,在精密测量领域中脱颖而出。在半导体制造过程中,芯片的生产对精度要求极高,基恩士光谱共焦传感器可精准测量芯片的厚度、线宽等关键参数,保障芯片的性能与质量。在光学元件制造领域,其能够精确测量透镜的曲率、厚度等参数,助力生产出高质量的光学元件。研究基恩士光谱共焦传感器,对于推动精密测量技术的发展具有重要意义。通过深入剖析其原理、结构、性能以及应用案例,能够为相关领域的技术创新提供参考,促进测量技术的不断进步。在实际应用中,有助于用户更合理地选择和使用该传感器,提高生产效率,降低生产成本。在汽车制造中,利用基恩士光谱共焦传感器对零部件进行精密测量,可优化生产流程,减少废品率。 1.2 研究现状在国外,光谱共焦传感器的研究起步较早,技术也相对成熟。法国的STIL公司作为光谱共焦传感器的发明者,一直处于该领域的技术前沿。其研发的光谱共焦...
泓川科技光谱共焦传感器于透明玻璃材料测量领域的应用深度剖析(下) 2025 - 01 - 14 六、应用案例深度解析6.1 光伏压延玻璃厚度监测案例6.1.1 案例背景与需求在全球积极推动清洁能源发展的大背景下,光伏产业迎来了蓬勃发展的黄金时期。光伏压延玻璃作为光伏电池板的关键封装材料,其质量直接关系到光伏电池板的性能与使用寿命。在光伏压延玻璃的生产过程中,厚度的精确控制是确保产品质量的核心要素之一。光伏压延玻璃的厚度对光伏电池板的性能有着至关重要的影响。若玻璃厚度过薄,可能无法为电池片提供足够的机械保护,在运输、安装及使用过程中容易出现破裂等问题,降低电池板的可靠性;而厚度过厚,则会增加光伏电池板的重量,不仅提高了运输成本,还可能影响电池板的光电转换效率。此外,玻璃厚度的均匀性也不容忽视。不均匀的厚度会导致光线在玻璃内部传播时产生折射和散射差异,进而影响光伏电池板对光线的吸收和利用效率,降低整体发电性能。传统的光伏压延玻璃厚度检测方法,如人工抽样测量,不仅效率低下,无法满足大规模生产的实时监测需求,而且受人为因素影响较大,测量精度难以保证。在这种情况下,迫切需要一种高精度、高效率的测量技术,以实现对光伏压延玻璃厚度的实时、精确监测,确保产品质量的稳定性和一致性。 6.1.2 传感器选型与安装在本案例中,经过对多种测量技术的综合评估与测试,最终选用了一款具有卓越性能的光谱共焦传感器。该传感器具备高精度测量能力,能够满足光伏压延玻璃对厚度测量精度的严苛要求;同时,其具...
Copyright ©2005 - 2013 无锡泓川科技有限公司

1

犀牛云提供企业云服务
Our Link
X
3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 0510-88155119
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开