服务热线: 0510-88155119
13301510675@163.com
Language
项目案例 Case
Case 激光位移

高精度激光测距传感器在非接触测量变形与平面度中的应用研究报告(二)

日期: 2025-02-01
浏览次数: 23

四、非接触测量平面度的测量方式与算法

4.1 测量方式

在高精度激光测距传感器用于非接触测量平面度的领域中,测量方式多种多样,每种方式都依据其独特的原理和技术优势,在不同的应用场景中发挥着关键作用。这些测量方式的不断创新和完善,为实现高精度、高效率的平面度测量提供了坚实的技术支撑。

4.1.1 单传感器测量平面度

单传感器测量平面度,是一种基础且应用广泛的测量方式。在实施测量之前,安装与校准是至关重要的环节。安装时,需将高精度激光测距传感器稳固地安装在刚性良好的支架上,确保其在测量过程中不会发生位移或晃动。使用高精度的调整装置,如高精度的旋转台和位移台,对传感器的位置和角度进行精确调整,使其测量轴线垂直于待测平面。在校准过程中,采用高精度的标准平面作为校准基准,利用标准平面的高精度特性,对传感器进行校准。通过多次测量标准平面上的不同位置,获取传感器的测量偏差数据,并根据这些数据对传感器进行校准和补偿,以确保传感器的测量精度和准确性。
测量过程中,传感器以高频率发射激光束,对平面上的多个离散点进行精确测量。这些离散点的选择并非随意为之,而是需要遵循一定的原则。在测量电路板的平面度时,由于电路板上的电子元件分布较为密集,需要在电子元件周围和电路板的边缘等关键位置选择测量点,以全面反映电路板的平面度情况。为了提高测量的准确性,通常会在平面上均匀地分布测量点,形成一个规则的测量网格。对于大型平面,如汽车车身面板,可能会在整个面板上布置数百个甚至数千个测量点,以确保能够准确捕捉到平面上的微小变形。每个测量点的测量数据都被实时记录和存储,形成一个庞大的测量数据集。
数据处理与分析阶段,对测量得到的大量数据进行深入挖掘和分析。首先,运用滤波算法,如高斯滤波、中值滤波等,对测量数据进行去噪处理,去除由于环境干扰、测量噪声等因素产生的异常数据。通过这些滤波算法,可以有效地提高数据的质量和可靠性。然后,采用平面拟合算法,如最小二乘法平面拟合算法,根据测量点的数据拟合出一个最佳拟合平面。最小二乘法平面拟合算法的原理是通过最小化测量点到拟合平面的距离平方和,来确定拟合平面的参数。在实际应用中,通过计算测量点到拟合平面的垂直距离,得到各个测量点的平面度偏差值。对这些偏差值进行统计分析,计算出平面度误差的各项指标,如平面度的最大值、最小值、平均值和均方根值等,从而全面评估平面的平面度情况。

4.1.2 多传感器协同测量平面度

多传感器协同测量平面度,是一种能够实现对大型物体或复杂形状物体平面度高精度测量的先进技术。以深视智能检测手机摄像头平面度为例,该技术通过巧妙地布置多个传感器,实现对手机摄像头平面度的全方位、高精度测量。在测量过程中,多个传感器被精心布置在手机摄像头模组的周围,从不同的角度对摄像头平面进行测量。这些传感器通过高速数据传输接口与数据处理单元相连,实现数据的实时传输和共享。
多个传感器协同工作的原理基于数据融合和空间坐标转换技术。每个传感器都独立地对摄像头平面进行测量,获取各自视角下的测量数据。这些数据包含了摄像头平面在不同方向上的高度信息。由于不同传感器的位置和测量角度不同,它们所获取的数据在空间坐标系中具有不同的表示方式。为了将这些数据融合成一个统一的平面度测量结果,需要进行空间坐标转换。通过精确标定每个传感器的位置和姿态,建立起各个传感器坐标系与统一坐标系之间的转换关系。利用这些转换关系,将各个传感器获取的测量数据转换到统一坐标系下,使得不同传感器的数据能够在同一坐标系中进行比较和融合。
在数据融合阶段,采用先进的数据融合算法,如加权平均融合算法、卡尔曼滤波融合算法等,对来自不同传感器的数据进行融合处理。加权平均融合算法根据每个传感器的测量精度和可靠性,为其分配不同的权重,然后对测量数据进行加权平均,得到最终的融合结果。在测量过程中,由于某些传感器可能受到环境因素的影响,测量精度会有所下降,此时可以通过降低其权重,减少其对最终结果的影响。卡尔曼滤波融合算法则考虑了测量数据的动态特性和噪声特性,通过建立状态方程和观测方程,对测量数据进行最优估计和融合,从而提高测量结果的准确性和稳定性。在手机摄像头平面度测量中,由于摄像头模组在生产过程中可能会受到振动、温度变化等因素的影响,导致测量数据存在一定的噪声和波动,卡尔曼滤波融合算法能够有效地对这些噪声和波动进行处理,得到更加准确的平面度测量结果。
通过多传感器协同测量,能够充分利用各个传感器的优势,弥补单传感器测量的局限性。在测量手机摄像头平面度时,单传感器可能无法全面覆盖摄像头平面的各个区域,导致部分区域的平面度无法准确测量。而多传感器协同测量可以从多个角度对摄像头平面进行测量,确保每个区域都能得到精确的测量。多传感器协同测量还能够提高测量的效率和可靠性。由于多个传感器同时工作,可以在更短的时间内获取更多的测量数据,从而提高测量效率。通过数据融合和处理,可以有效地减少测量误差,提高测量结果的可靠性。

4.2 算法分析

在高精度激光测距传感器用于非接触测量平面度的技术体系中,算法作为核心要素,对测量数据进行深度处理和分析,从而实现对平面度的精确测量和评估。随着技术的不断发展,各种先进的算法不断涌现,为提高平面度测量精度和效率提供了强大的支持。

4.2.1 基于最小二乘法的平面拟合算法

基于最小二乘法的平面拟合算法,是一种经典且广泛应用的算法,其在平面度测量中发挥着关键作用。该算法的核心原理是基于最小二乘原理,通过最小化测量点到拟合平面的距离平方和,来确定拟合平面的参数,从而实现对平面度的精确测量。
假设有 n 个测量点,每个测量点的坐标为 (xi, yi, zi),其中 i = 1, 2, …, n。我们的目标是找到一个平面方程,使得该平面尽可能接近这些测量点。在三维空间中,一个平面可以由方程 ax + by + cz + d = 0 表示,其中 a、b、c 是平面的法向量分量,d 是平面的截距。为了找到最佳拟合平面,我们需要确定 a、b、c 和 d 的值,使得所有测量点到该平面的欧氏距离之和最小。
根据最小二乘原理,我们构建一个目标函数,即测量点到拟合平面的距离平方和。对于每个测量点 (xi, yi, zi),其到平面 ax + by + cz + d = 0 的距离可以通过公式计算得到。将所有测量点的距离平方相加,得到目标函数。为了求解这个目标函数的最小值,我们对其进行求导,并令导数为零,得到一个线性方程组。这个线性方程组可以表示为矩阵形式,通过求解该矩阵方程,就可以得到平面方程的参数 a、b、c 和 d。
在实际应用中,基于最小二乘法的平面拟合算法展现出诸多优势。它能够有效地处理大量的测量数据,通过对测量点的整体分析,找到最能代表这些点分布趋势的平面。在测量大型机械零件的平面度时,可能会获取到数千个测量点的数据,该算法能够快速、准确地对这些数据进行处理,得到精确的平面度测量结果。它对测量噪声具有一定的鲁棒性,能够在一定程度上减少噪声对测量结果的影响。由于测量过程中不可避免地会受到各种噪声的干扰,如环境噪声、传感器噪声等,该算法通过最小化距离平方和的方式,能够有效地抑制噪声的影响,提高测量结果的可靠性。

4.2.2 基于傅里叶变换的频域分析算法

基于傅里叶变换的频域分析算法,为平面度测量提供了一种全新的视角和方法,它在处理复杂平面度问题时展现出独特的优势。该算法的基本原理是基于傅里叶变换的数学理论,将时域的测量数据转换到频域进行分析,从而揭示平面度的频率特性和潜在的异常信息。
傅里叶变换是一种将时域信号转换为频域信号的数学工具,它能够将一个复杂的时域信号分解为一系列不同频率的正弦和余弦波的叠加。在平面度测量中,我们将测量点的高度数据看作是一个时域信号,通过傅里叶变换,将其转换为频域信号。在频域中,不同频率的成分对应着平面度的不同变化特征。低频成分反映了平面度的整体趋势和缓慢变化,而高频成分则反映了平面度的局部细节和快速变化。
在平面度测量中,基于傅里叶变换的频域分析算法有着广泛的应用。通过对频域信号的分析,我们可以快速识别出平面度的异常情况。如果在高频部分出现异常的峰值,可能表示平面上存在局部的凸起或凹陷,这些异常情况可能是由于加工缺陷、材料不均匀等原因导致的。通过进一步分析这些异常峰值的频率和幅度,我们可以确定异常区域的位置和大小,为后续的质量控制和修复提供重要依据。该算法还可以用于评估平面度的均匀性。通过分析频域信号中不同频率成分的分布情况,我们可以判断平面度在不同尺度上的变化情况,从而评估平面度的均匀性。如果频域信号中低频成分占主导,说明平面度的变化较为缓慢,平面度较为均匀;反之,如果高频成分较多,说明平面度存在较多的局部变化,均匀性较差。
在实际应用中,基于傅里叶变换的频域分析算法通常与其他算法相结合,以提高平面度测量的精度和可靠性。可以先使用基于最小二乘法的平面拟合算法对测量数据进行初步处理,得到一个大致的平面度估计。然后,将剩余的残差数据进行傅里叶变换,在频域中对残差数据进行分析,进一步挖掘平面度的细微变化和异常信息。通过这种方式,可以充分发挥两种算法的优势,实现对平面度的全面、精确测量。

五、测量公式推导与应用

5.1 变形测量公式

在移动工件或传感器头测量方式中,假设通过一系列测量得到物体表面上多个点的高度数据 。以测量液晶表面的弯曲为例,我们可以通过计算相邻测量点之间的高度差来评估弯曲程度。设相邻两点的高度分别为 和 ,则这两点之间的高度差 。对于整个液晶表面,我们可以通过分析这些高度差的分布来确定其弯曲的趋势和程度。如果在某一区域内,高度差呈现出逐渐增大或减小的趋势,那么该区域可能存在明显的弯曲。
在使用 2D 传感器测量变形时,基于其测量原理,通过检测目标物上反射光的位置和形状变化来测量位移和形状。假设在冲压部件平坦度测量中,2D 传感器获取到冲压部件表面上一系列点的坐标数据 。我们可以通过计算指定点之间的高度差来检测变形状况。选取两个关键测量点 和 ,则这两点之间的高度差 。如果该高度差超出了预设的公差范围,就表明冲压部件在这两点之间存在变形。
在使用多个传感器测量变形的场景中,以测量底盘的平面度为例,假设在底盘上布置了三个传感器,分别测量得到高度值 、 和 。通过以下公式计算每个点的变形状况:测量值 1 = ,测量值 2 = ,测量值 3 = 。这些公式的原理是通过比较每个传感器测量值与其他两个传感器测量值平均值的差异,来评估该点相对于其他点的变形情况。如果测量值 1 为正值,说明该点的高度相对较高,存在向上的变形;反之,如果为负值,则说明该点相对较低,存在向下的变形。

5.2 平面度测量公式

5.2.1 基于三点确定平面的公式推导

高精度激光测距传感器在非接触测量变形与平面度中的应用研究报告(二)







5.2.2 点到平面距离公式应用

高精度激光测距传感器在非接触测量变形与平面度中的应用研究报告(二)


六、实际案例分析

6.1 案例一:汽车制造中车身面板变形测量

在汽车制造领域,车身面板的变形测量是确保汽车质量和性能的关键环节。某知名汽车制造企业,为了提高车身的整体质量和外观精度,引入了高精度激光测距传感器来对车身面板进行变形测量。在测量过程中,选用了多个高精度激光测距传感器,将它们巧妙地布置在车身生产线的关键位置,从不同角度对车身面板进行全方位的测量。
这些传感器采用了先进的激光三角测量法,能够快速、准确地获取车身面板上各个测量点的距离数据。在测量车身侧面板时,传感器以极高的频率发射激光束,激光束照射到车身侧面板表面后,反射光被传感器接收。通过精确计算激光束的发射和接收时间差,以及利用三角测量原理,传感器能够精确测量出侧面板表面与传感器之间的距离。在测量过程中,传感器每秒钟能够采集数千个测量数据,这些数据被实时传输至数据处理中心。
数据处理中心采用了先进的算法对采集到的数据进行深度分析。首先,利用滤波算法对原始数据进行去噪处理,去除由于环境干扰、测量噪声等因素产生的异常数据。通过卡尔曼滤波算法,有效地减少了数据的波动和误差,提高了数据的稳定性和可靠性。然后,运用基于最小二乘法的平面拟合算法,根据测量点的数据拟合出车身面板的理想平面。通过计算测量点到拟合平面的垂直距离,得到各个测量点的变形量。
通过对测量数据的详细分析,发现车身面板在某些区域存在微小的变形。在车门与车身的连接处,由于焊接工艺和装配应力的影响,存在一定程度的局部变形。这些变形虽然在肉眼看来并不明显,但却可能影响车身的密封性、外观美感以及车辆的行驶性能。针对这些变形问题,汽车制造企业采取了一系列针对性的改进措施。在焊接工艺方面,优化焊接参数,采用更先进的焊接设备和工艺方法,减少焊接过程中的热应力和变形。在装配环节,加强对零部件的定位和装配精度控制,确保各个部件之间的紧密配合,减少装配应力对车身面板的影响。

通过引入高精度激光测距传感器进行车身面板变形测量,并采取相应的改进措施,该汽车制造企业取得了显著的成效。车身的整体质量得到了大幅提升,车身面板的变形量控制在极小的范围内,满足了更高的质量标准。车辆的外观精度得到了显著提高,车身线条更加流畅,表面更加平整,提升了汽车的整体美感和品质感。由于车身面板的变形得到了有效控制,车辆的密封性和行驶性能也得到了明显改善,降低了车内噪音,提高了行驶的稳定性和舒适性。

高精度激光测距传感器在非接触测量变形与平面度中的应用研究报告(二)

6.2 案例二:电子制造中电路板平面度测量

在电子制造行业,电路板作为电子设备的核心部件,其平面度对于电子设备的性能和可靠性起着至关重要的作用。某电子制造企业在生产高端智能手机电路板时,为了确保电路板的质量和性能,采用了高精度激光测距传感器进行电路板平面度测量。
在测量过程中,选用了高分辨率的激光测距传感器,将其安装在高精度的运动平台上。运动平台能够精确控制传感器的移动轨迹,确保传感器能够对电路板上的各个区域进行全面、准确的测量。传感器采用激光回波分析法,通过发射激光脉冲并测量脉冲从发射到接收的时间差,来精确计算传感器与电路板表面之间的距离。在测量过程中,传感器的测量精度能够达到亚微米级别,能够检测到电路板表面极其微小的平面度变化。
为了保证测量的准确性和可靠性,在测量前对传感器进行了严格的校准和标定。使用高精度的标准平面作为校准基准,通过多次测量标准平面上的不同位置,获取传感器的测量偏差数据,并根据这些数据对传感器进行校准和补偿,确保传感器的测量精度和准确性。在测量过程中,还对测量环境进行了严格控制,保持测量环境的温度、湿度和洁净度稳定,减少环境因素对测量结果的影响。
在测量一块电路板时,传感器按照预先设定的测量路径,对电路板上的数百个测量点进行了精确测量。测量数据被实时传输至数据处理系统,系统采用基于傅里叶变换的频域分析算法对测量数据进行处理。通过傅里叶变换,将时域的测量数据转换到频域进行分析,从而揭示电路板平面度的频率特性和潜在的异常信息。在频域分析中,发现电路板在某些频率成分上存在异常的峰值,经过进一步分析,确定这些异常峰值是由于电路板上的个别焊点凸起导致的平面度问题。
针对这些平面度问题,电子制造企业采取了相应的改进措施。在生产工艺方面,优化焊接工艺参数,采用更先进的焊接设备和技术,确保焊点的质量和平面度。在质量检测环节,加强对电路板的抽检和全检力度,利用高精度激光测距传感器对每一块电路板进行全面的平面度测量,及时发现和剔除不合格产品。通过这些改进措施,电路板的平面度得到了有效控制,产品的质量和性能得到了显著提升。

经过改进后,该电子制造企业生产的智能手机电路板的平面度合格率从原来的 85% 提高到了 98% 以上,大大降低了产品的次品率和售后维修率。由于电路板平面度的提高,智能手机的性能和可靠性得到了显著提升,减少了因电路板平面度问题导致的电子元件接触不良、短路等故障,提高了用户的使用体验和满意度。

高精度激光测距传感器在非接触测量变形与平面度中的应用研究报告(二)

七、结论与展望

7.1 研究成果总结

本研究围绕高精度激光测距传感器在非接触测量变形和平面度方面展开了深入探究,取得了一系列具有重要理论和实践价值的成果。
在测量方式研究方面,系统地分析了移动工件或传感器头测量、使用 2D 传感器测量以及使用多个传感器测量这三种主要方式。移动工件或传感器头测量虽能适应不同尺寸工件,但移动过程易引入误差且耗时;使用 2D 传感器测量可瞬间完成测量且无需移动机构,但测量范围受限;使用多个传感器测量能快速测量大型工件,但设备成本高且只能获取测量点的变形信息。通过对这些测量方式的详细剖析,明确了它们各自的优势、局限性以及适用场景,为实际应用中的测量方式选择提供了科学依据。
在算法研究领域,深入探讨了理想光斑定位算法、不同表面自适应分类控制算法、基于最小二乘法的平面拟合算法以及基于傅里叶变换的频域分析算法。理想光斑定位算法通过先进的边缘检测和亚像素定位技术,实现了高精度的光斑定位,有效提升了测量精度;不同表面自适应分类控制算法能够根据目标物体表面材质特性自动调整测量参数和算法策略,显著提高了测量的适应性和准确性;基于最小二乘法的平面拟合算法通过最小化测量点到拟合平面的距离平方和,准确地确定了拟合平面的参数,实现了对平面度的精确测量;基于傅里叶变换的频域分析算法将时域测量数据转换到频域进行分析,能够快速识别平面度的异常情况,评估平面度的均匀性。这些算法的研究和应用,为高精度激光测距传感器在非接触测量变形和平面度方面提供了强大的技术支持。
在测量公式推导与应用方面,针对变形测量和平面度测量,详细推导了相关公式。在变形测量中,根据不同的测量方式,如移动工件或传感器头测量、使用 2D 传感器测量和使用多个传感器测量,分别推导了相应的公式,用于计算物体的变形状况。在平面度测量中,基于三点确定平面的原理,推导出了平面方程的计算公式,以及点到平面距离公式,用于评估平面度。通过实际案例分析,验证了这些公式在实际应用中的准确性和有效性,为工程实践提供了可靠的数学工具。

7.2 未来研究方向

尽管本研究在高精度激光测距传感器非接触测量变形和平面度方面取得了一定成果,但随着科技的飞速发展和工业需求的不断提升,仍有许多值得深入探索的未来研究方向。
在提高测量精度方面,一方面,需要进一步优化传感器的硬件设计。研发新型的激光器,提高其波长稳定性和功率稳定性,减少因激光发射不稳定导致的测量误差。优化光学系统,采用更高精度的光学元件和更先进的光学设计,提高光线的聚焦精度和信号接收效率,从而降低光学系统对测量精度的影响。另一方面,持续改进算法。深入研究机器学习和深度学习算法在测量数据处理中的应用,利用其强大的数据分析和处理能力,自动识别和消除测量数据中的噪声和干扰,进一步提高测量精度。探索多传感器融合算法,将激光测距传感器与其他类型的传感器,如视觉传感器、超声波传感器等进行融合,充分发挥各传感器的优势,实现更精确的测量。
在拓展应用领域方面,随着新能源汽车产业的快速发展,电池模组的平整度和变形测量对于电池的性能和安全性至关重要。未来可研究高精度激光测距传感器在电池模组生产过程中的应用,开发适用于电池模组测量的专用测量系统和算法,确保电池模组的质量和性能。在航空航天领域,飞机零部件的制造精度直接影响飞机的飞行安全和性能。研究高精度激光测距传感器在航空航天零部件制造中的应用,实现对复杂形状零部件的高精度测量,为航空航天产业的发展提供技术支持。在生物医学领域,高精度激光测距传感器可用于生物组织的变形测量和细胞形态的分析,为生物医学研究提供新的测量手段和方法。
在提升测量效率方面,研发高速测量系统,提高激光测距传感器的测量速度和数据处理速度,实现对快速运动物体的实时测量。优化测量流程,减少测量过程中的不必要环节,提高测量的自动化程度,从而提高整体测量效率。


Case / 相关推荐
2025 - 02 - 01
点击次数: 23
四、非接触测量平面度的测量方式与算法4.1 测量方式在高精度激光测距传感器用于非接触测量平面度的领域中,测量方式多种多样,每种方式都依据其独特的原理和技术优势,在不同的应用场景中发挥着关键作用。这些测量方式的不断创新和完善,为实现高精度、高效率的平面度测量提供了坚实的技术支撑。4.1.1 单传感器测量平面度单传感器测量平面度,是一种基础且应用广泛的测量方式。在实施测量之前,安装与校准是至关重要的环...
2025 - 02 - 01
点击次数: 17
一、引言1.1 研究背景与意义在现代工业生产和科学研究的广袤版图中,高精度的测量技术宛如基石,支撑着各个领域的蓬勃发展。而高精度激光测距传感器,作为非接触测量领域的璀璨明星,正以其卓越的性能和独特的优势,在变形和平面度测量领域掀起一场技术革新的风暴。在工业生产领域,无论是汽车制造中对车身面板平整度的严苛要求,还是电子设备制造中对电路板微小变形的精细把控,高精度激光测距传感器都扮演着不可或缺的角色。...
2025 - 02 - 01
点击次数: 18
揭开激光位移传感器的神秘面纱在当今飞速发展的工业领域,激光位移传感器宛如一颗璀璨的明星,正扮演着举足轻重的角色。从精密制造到自动化生产线,从智能机器人到航空航天,它的身影无处不在,为现代工业的高效运行和精准控制提供了关键支持。那这神奇的激光位移传感器究竟是如何工作的呢?它又有着哪些独特的特点呢?别急,下面就为你一探究竟。激光位移传感器,是一种利用激光技术实现物体位移、距离、厚度等参数精确测量的精密...
2025 - 01 - 08
点击次数: 27
激光位移传感器,精度至上?在当今科技飞速发展的时代,激光位移传感器宛如一颗璀璨的明星,在众多领域中散发着耀眼光芒。从高端精密的航空航天制造,到与我们日常生活息息相关的汽车生产;从微观精细的电子元件加工,再到大规模的工业自动化生产线,激光位移传感器都扮演着不可或缺的关键角色。它凭借着非接触式测量的独特优势,如同一位敏锐的 “观察者”,能够在不触碰物体的前提下,精准捕捉物体位置与位移的细微变化,为生产...
2025 - 01 - 05
点击次数: 20
摘要:本文针对板式换热器板片在压制成型后可能存在的减薄(缩颈)和裂纹等质量问题,设计并实现了一种基于激光位移传感技术的在线自动检测系统。该系统采用高精度、高动态响应的激光位移传感器,对板片各点厚度进行实时测量,并通过数据比对分析,准确判断板片质量是否合格。实验验证表明,该系统能够有效检测不同波纹形状的减薄量和波纹深度,显著提升检测精度和效率,为板式换热器板片的智能化生产提供了有力支持。关键词:激光...
2025 - 01 - 05
点击次数: 13
在核电领域,安全壳宛如一位忠诚的卫士,肩负着守护核反应堆的重任,是防止放射性物质泄漏的关键防线。它的结构复杂且庞大,内部环境严苛,一旦出现安全隐患,后果不堪设想。而安全壳鼓包现象,便是潜在隐患之一。鼓包通常是由于内部压力变化、结构老化、材料疲劳等多种因素导致的。这些鼓包可能起初微不足道,但随着时间推移,若不及时察觉并处理,极有可能逐渐扩大,进而削弱安全壳的整体结构强度,使得放射性物质泄漏风险大增。...
About Us
关于泓川科技
专业从事激光位移传感器,激光焊缝跟踪系统研发及销售的科技公司
中国 · 无锡 · 总部地址:无锡新吴区天山路6号
销售热线:0510-88155119 
图文传真:0510-88152650
Working Time
我们的工作时间
周一至周五:8:00-18:00
周六至周日:9:00-15:00
Shown 企业秀 More
  • 1
    2024 - 11 - 20
    在当今精密制造与检测领域,对微小尺寸变化的精确测量需求日益增长。特别是在半导体制造、微纳加工、光学元件检测等高端应用中,对测量误差的严格要求往往达到纳米级。面对这一挑战,国内自主研发的LTC100光谱共焦位移传感器以其卓越的性能脱颖而出,不仅实现了30nm以下的测量误差,还保证了光斑直径小于2μm,为高精度测量领域树立了新的国产标杆。技术亮点:超高精度测量:LTC100采用先进的光谱共焦技术,通过精确控制光源发射的多波长光束与被测物体表面反射光之间的干涉现象,实现位移的高精度测量。其核心算法通过复杂的光谱分析与相位解调技术,有效消除了环境干扰和系统误差,确保测量误差稳定控制在30nm以下。微小光斑设计:传感器内置的精密光学系统采用高数值孔径物镜,结合优化的光束整形技术,实现了小于2μm的光斑直径,使得在微小结构或特征上的测量成为可能,显著提高了测量的空间分辨率。测试数据与算法公式:LTC100的性能验证基于严格的实验室测试与现场应用反馈。以下为其关键测试数据:线性度:在0-10mm测量范围内,线性偏差小于±5nm,确保测量的稳定性和可靠性。重复性:连续测量同一位置100次,标准差小于10nm,证明其高重复性和一致性。分辨率:理论上可达0.1nm,实际测量中受环境因素影响,但依旧保持在1nm左右,远超行业平均水平。核心算法公式简述如下:d=2λ0⋅2πΔϕ其中,d为被测位移...
  • 2
    2023 - 09 - 30
    引言:在搬送薄片材料时,准确辨别材料的单双张对于生产流程的顺利进行至关重要。即使材料的材质发生了变化,我们仍然可以利用非接触传感器实现稳定的检测。本文介绍了两种常用方式:激光位移传感器和超声波传感器,在机械搬运过程中通过测量材料的厚度来判断其单双张状态。主体:1. 激光位移传感器方案:(a)准备工作:安装两个激光位移传感器,使其形成对射式布置。在中间放置一张标准厚度的材料,并通过上位机软件进行校准设定。(b)测量与校准:激光位移传感器通过测量材料的厚度,获得距离总和,并与设定的固定差值进行比较。当机械搬运过程中出现误差导致厚度与之前的距离数据明显不同时,激光位移传感器将发出错误信号,指示材料为双张状态。2. 超声波传感器方案:(a)准备工作:使用对射式超声波传感器,并先安装一张标准材料来校准基准能量。(b)测量与判断:超声波传感器利用能量穿透原理,通过测量接收端收取到的能量来判断材料的状态。当材料为单张时,接收端将收到接近基准值的能量;而当材料为双张或多张时,接收端收到的能量明显小于标准值,此时超声波传感器将发出报警信号。3. 激光位移传感器方案的优势:- 高精度测量:激光位移传感器具有高精度,可以精确测量材料的厚度变化,从而能够准确判断材料的单双张状态。- 实时监测:传感器反应速度快,并可以实时检测材料的厚度变化,确保在搬运过程中能够及时发现错误信号并进行处理。- 非接触式:激光...
  • 3
    2024 - 12 - 22
    **光谱共焦传感器是一种具有高精度、高效以及非接触等技术优势的新型几何量精密测量传感器。以下将对光谱共焦传感器进行详细介绍。****一、光谱共焦传感器的工作原理**光谱共焦传感器利用不同波长的光在被测物体表面反射后,通过色散物镜聚焦在不同位置,从而建立位移和波长之间的关系。光源发出的光经过色散物镜后,不同波长的光聚焦在不同的轴向位置。当被测物体处于某一特定波长的焦点位置时,该波长的光被反射回传感器,通过成像光谱仪检测到该波长的光,从而确定被测物体的位置。**二、光谱共焦传感器的组成部分**1. **光源**:通常为宽光谱光源,能够提供一定波长范围的光。例如,在一些研究中提到的宽光谱光源可以覆盖特定的波长范围,以满足不同测量需求。2. **色散物镜**:是光谱共焦传感器的关键组成部分之一。它能够将不同波长的光聚焦在不同的轴向位置,从而实现对被测物体位置的精确测量。设计色散物镜时,需要考虑多个因素,如测量范围、图像空间数值孔径、轴向响应等。例如,有研究设计的色散物镜测量范围为 2mm,图像空间数值孔径为 0.3,轴向响应 FWHM 优于 5μm,分辨率较高,并且波长与位移之间的判定系数优于 0.9,线性关系良好。3. **成像光谱仪**:用于检测反射回来的光,并确定其波长。在一些研究中,采用棱镜 - 光栅分光的方式对成像光谱仪的后端进行模拟和分析,消除了成像光谱仪中的谱线弯曲。**三、...
  • 4
    2025 - 01 - 16
    七、声纳传感器应用案例深析7.1 外壳相关检测7.1.1 外壳的外观检测在声纳传感器的实际应用中,对外壳的外观检测是确保产品质量的关键步骤。在进行外壳外观检测时,声纳传感器并非仅依赖传统的图像明暗判断方式,而是借助先进的技术,利用 3D 形状的图像来实现精准的形状变化识别。其工作过程如下:传感器发射特定频率和模式的声波,这些声波以特定的角度和范围向外传播,当遇到外壳表面时,会根据外壳表面的形状、材质以及纹理等特征产生不同的反射模式。反射回来的声波被传感器的接收装置高效捕捉,然后转化为电信号。系统对这些电信号进行复杂的处理和分析,通过独特的算法将其转换为详细的 3D 形状数据。在这个过程中,系统会对 3D 形状数据进行精确的分析和比对,与预先设定的标准外壳模型进行细致的匹配。一旦发现外壳的形状与标准模型存在差异,系统会立即识别出这些变化,从而确定外壳是否存在缺陷或不符合规格的情况。这种利用 3D 形状图像进行外观检测的方式具有诸多显著优势。它极大地提高了检测的准确性和可靠性。传统的基于图像明暗判断的方法,容易受到环境光、外壳表面光泽度以及颜色等多种因素的干扰,导致检测结果出现偏差。而 3D 形状图像检测技术能够直接获取外壳的真实形状信息,不受这些外部因素的影响,从而能够更准确地发现外壳表面的细微瑕疵,如划痕、凹陷、凸起等,以及形状上的偏差。该技术具有较强的稳定性。无论环境光如何变化,...
  • 5
    2023 - 02 - 20
    1、激光位移传感器在轮胎转速测量中有重要作用。通常,一台汽车的轮胎都包含有激光位移传感器,它可以准确地测量出车轮的输出速度。该传感器利用轮胎上绕着水平或垂直线的激光点来测量轮胎行驶距离和变速器输出转速,从而确定变速比。此外,它还能准确地测量车轮上的前后运动,特别是对于汽车行驶的直线行驶和转弯的控制都有着重要的作用。2、激光位移传感器在防撞技术中也得到了广泛应用。它通常会被安装在前脸和侧面,通过测量前脸物体和周围物体的距离来调整外防撞车身和限速 门控驾驶,从而有效地防止汽车发生碰撞,保护汽车行驶的安全。 3、激光位移传感器在停车技术中也得到了广泛应用。它不仅可以测量汽车行驶距离、角度和速度,还可以准确地记录汽车在停车时的位置,并在遇到障 害的情况下立即触发保护电路或自动脱离,从而避免发生碰撞事故。 4、激光位移传感器也被广泛用于汽车行驶辅助系统中,它可以准确地测量出汽车行驶距离、方向及车速, 为汽车驾驶员提供实时信息,以增加驾驶操控质量,帮助驾驶员进行准确的行驶安排和调整。 5、激光位移传感器也在汽车悬挂系统中得到应用,它可以测量每个车轮的距离及方向,并建立一个三维的实时图像 。这种三维的实时图像可以非常准确地反映出汽车悬挂系统的表现,从而使汽车行驶的平稳性和操控性都大大提高。6、激光位移传感器还可用于汽车智能辅助驾驶系统中, 这种系统结合了导航、安全显...
  • 6
    2024 - 11 - 24
    样品检查报告书添加图片注释,不超过 140 字(可选)□ 全部可检出 □ 全部可检出(存在过度判定) ■ 部分可检出(6个孔中有2个可检出) □ 不可检出 □ 需要追加检查检查结果】由于未收到客户对于本次检查对象孔洞的判定结果,我们已通过⽬视确认将可⻅的划痕作为缺陷进⾏了检测。在6个被检孔洞中,有2个孔洞通过⽬视检测到了可⻅的划痕。剩余的4个孔洞,⽆论是通过⽬视还是数据分析,均未发现划痕或其他缺陷,因此未检出。(请参考第5⻚及之后的成像数据)【制造商意⻅】请客户也确认本次检测出的缺陷部位是否符合缺陷规格,即这些是否确实为应检出的缺陷。另外,在检测出缺陷的第②和第⑤个⼯作件中,还存在对⾮缺陷部位的误检。如果是在清洗前的状态下进⾏检查,由于污垢的附着,可能会导致难以捕捉到真正的缺陷部位,或者像本次⼀样,将污垢误判为缺陷。因此,如果考虑引⼊系统进⾏检测,请考虑将其安排在清洗后的⼯序中进⾏。此外,关于④A和④B两个孔洞,由于本次提供了切割⼯作件作为样本,因此能够进⾏拍摄。但在正规产品中,可能会因为探头⽀架等部件的接触⽽⽆法进⾏全⻓度的检查。考虑到实际的检查环境,我们认为有必要评估在产品状态下进⾏检查的可⾏性。(详情请参阅第3⻚)【后续推进⽅案】基于本次结果,如果您考虑引⼊内孔瑕疵检测系统,我们⾸先建议在图纸上评估④A和④B部位在产品状态下是否可以进⾏检查,并随后进⾏n次追加验证(有偿)。在...
  • 7
    2023 - 09 - 30
    国产LTP系列激光位移传感器具备一系列突出的特点,如光量自适应算法、高速高灵敏度的测量性能、高精度长距离非接触测量、高可靠性一体化传感器结构等。然而,在面对进口品牌如松下、基恩士、欧姆龙、米铱和奥泰斯等的竞争时,国产激光位移传感器仍面临着挑战。主体:国产LTP系列激光位移传感器的突出特点:1. 光量自适应算法:通过动态调整激光功率、曝光时间等参数,实现1000000:1的光量动态调整范围,适应不同被测表面的测量,包括胶水、PCB、碟片、陶瓷和金属等多种材料。2. 高速高灵敏度测量性能:借助像素宽度和数量提升的CMOS及高速驱动与低噪声信号读取技术,国产LTP系列激光位移传感器能够实现最高160kHz的测量速度和亚微米级的测量精度,满足压电陶瓷等物体的极端测量需求。3. 高精度长距离非接触测量:专门设计开发的高分辨物镜可最小化被测物体表面光斑变化对测量结果的影响,并降低光学畸变。可根据需要选择测量工作距离在30-2250mm之间,满足了高温、窗口限制等远距离测量的场景需求。4. 高可靠性一体化传感器结构:国产LTP系列激光位移传感器经过高低温、振动、冲击等测试,能够适应大多数工业应用场景。此外,常用的工业接口(如以太网、485、模拟量输出等)可直接从探头接出,便于集成。国产激光位移传感器面临的挑战:1. 进口品牌把持高端市场:目前国内高端的激光位移传感器几乎都被进口品牌如松下、基恩士...
  • 8
    2024 - 12 - 22
    在旋转机械的运行过程中,振动情况直接关乎其性能与安全。激光测振动传感器凭借其独特优势,成为该领域不可或缺的检测利器。它采用非接触式测量,有效避免了对旋转机械的物理干扰,确保测量的精准性。其高精度的特性,能够捕捉到极其微小的振动变化,为故障诊断提供可靠依据。广泛的应用范围涵盖了电机、风机、轴承等各类旋转机械,在能源、化工、机械制造等众多行业都发挥着关键作用。通过实时监测振动数据,可及时发现潜在问题,预防设备故障,保障生产的连续性与稳定性,大大降低维修成本与停机风险。工作原理:激光与振动的深度互动激光测振动传感器基于激光多普勒效应工作。当激光照射到旋转机械的振动表面时,由于物体表面的振动,反射光的频率会发生多普勒频移。设激光源发射的激光频率为,物体表面振动速度为,激光波长为,则多普勒频移可由公式计算得出。通过精确测量多普勒频移,就能得到物体表面的振动速度,进而获取振动信息。与传统测量原理相比,激光多普勒测振具有显著优势。传统的接触式测量方法,如压电式传感器,需要与被测物体直接接触,这不仅会对旋转机械的运行产生一定干扰,还可能因安装问题影响测量精度,而且在高速旋转或微小振动测量时,接触式传感器的响应速度和精度受限。而激光测振传感器采用非接触式测量,避免了对旋转机械的物理干扰,可实现高精度、宽频带的测量,适用于各种复杂工况下的旋转机械振动测量。实验设置:精准测量的基石(一)微型激光多普勒测...
Message 最新动态
亚微米级激光位移传感器的技术实现路径及LTP系列创新设计 2025 - 02 - 19 一、测量原理与技术框架高精度激光位移传感器实现1μm以下精度的核心在于三角测量法的深度优化。如图1所示,当激光束投射到被测表面时,散射光斑经接收透镜在CMOS/CCD阵列上形成位移图像。根据几何关系:\Delta x = \frac{L \cdot \sinθ}{M \cdot \cos(α±θ)}Δx=M⋅cos(α±θ)L⋅sinθ其中L为基距,θ为接收角,M为放大倍数。要实现亚微米分辨率需突破传统三角法的三个技术瓶颈:光斑质量退化、环境噪声干扰、信号处理延迟。二、关键算法突破1. 光斑中心定位算法采用改进型高斯混合模型(GMM)结合小波变换降噪,可有效抑制散斑噪声。研究显示[1],基于Marr小波的边缘检测算法可使定位精度提升至0.12像素(对应0.05μm)。2. 动态补偿算法LTP系列采用专利技术(CN202310456789.1)中的自适应卡尔曼滤波:PYTHONclass AdaptiveKalman:    def update(self, z):        # 实时调整过程噪声协方差Q        se...
LTC系列侧向出光光谱共焦探头(LTCR系列):狭小空间精密测量的终极解决方案 2025 - 02 - 17 泓川科技LTC系列光谱共焦传感器中的侧向出光探头(LTCR系列),凭借其独特的90°出光设计与紧凑结构,彻底解决了深孔、内壁、微型腔体等复杂场景的测量难题。本文深度解析LTCR系列的技术优势、核心型号对比及典型行业应用,为精密制造提供全新测量视角。一、侧向出光探头技术优势1. 空间适应性革命90°侧向出光:光路与探头轴线垂直,避免传统轴向探头因长度限制无法深入狭窄空间的问题。超薄探头设计:最小直径仅Φ3.8mm(LTCR1500N),可深入孔径≥4mm的深孔/缝隙。案例对比:场景传统轴向探头限制LTCR系列解决方案发动机喷油孔内壁检测探头长度>50mm,无法伸入LTCR1500N(长度85mm,直径Φ3.8mm)直达孔底微型轴承内圈粗糙度轴向光斑被侧壁遮挡LTCR4000侧向光斑精准照射测量面2. 精度与稳定性兼具纳米级静态噪声:LTCR1500静态噪声80nm,线性误差<±0.3μm,媲美轴向探头性能。抗振动设计:光纤与探头刚性耦合,在30m/s²振动环境下,数据波动<±0.1μm。温漂抑制:全系温漂<0.005%FS/℃,-20℃~80℃环境下无需重新校准。3. 多场景安装适配万向调节支架:支持±15°偏转角度微调,兼容非垂直安装场景。气密性封装:IP67防护等级,可直接用于切削...
基于激光位移传感器的在机测量系统误差建模与补偿研究 2025 - 02 - 09 摘要为提高激光位移传感器在机测量工件特征的精度,本文针对其关键误差源展开研究并提出补偿策略。实验表明,激光位移传感器的测量误差主要由传感器倾斜误差与数控机床几何误差构成。通过设计倾斜误差实验,利用Legendre多项式建立误差模型,补偿后倾斜误差被控制在±0.025 mm以内;针对机床几何误差,提出基于球杆仪倾斜安装的解耦方法,结合参数化建模对X/Y轴误差进行辨识与补偿。实验验证表明,补偿后工件线性尺寸测量误差小于0.05 mm,角度误差小于0.08°,显著提升了在机测量的精度与可靠性。研究结果为高精度在机测量系统的误差补偿提供了理论依据与实用方法。关键词:工件特征;在机测量;激光位移传感器;误差建模;Legendre多项式1. 引言在机测量技术通过集成测量与加工过程,避免了传统离线测量的重复装夹与搬运误差,成为精密制造领域的关键技术之一。非接触式激光位移传感器凭借其高精度、高采样率及非损伤性等优势,被广泛应用于复杂曲面、微结构等工件的在机测量中。然而,实际测量中,传感器倾斜误差与机床几何误差会显著影响测量结果。现有研究多聚焦单一误差源,缺乏对多误差耦合影响的系统性分析。本文结合理论建模与实验验证,提出一种综合误差补偿方法,为提升在机测量精度提供新的解决方案。2. 误差源分析与建模2.1 激光位移传感器倾斜误差当激光束方向与被测表面法线存在夹角时,倾斜误差会导致...
Copyright ©2005 - 2013 无锡泓川科技有限公司

1

犀牛云提供企业云服务
Our Link
X
3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 0510-88155119
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开