标题:光学振动测量技术在轮毂电机声学特性优化中的应用研究
摘要
本文介绍了德国马格德堡大学(Otto von Guericke University Magdeburg)Editha工作小组对轮毂电机声学特性的深入研究。通过采用光学振动测量技术,对轮毂电机在运行状态下的振动响应进行了精确测量与分析,旨在为优化电动汽车的声学性能提供科学依据。文章详细阐述了测量原理、实验方法、数据处理及结果分析,并展望了未来研究方向。
1. 引言
随着电动汽车的快速发展,轮毂电机作为其核心部件之一,其声学特性的优化成为研究热点。轮毂电机的振动和噪音不仅影响驾乘体验,还关系到电动汽车的整体性能和市场竞争力。本文基于Editha工作小组的研究成果,探讨了光学振动测量技术在轮毂电机声学特性优化中的应用。
2. 近轮电驱动研究背景
自2011年以来,马格德堡大学Editha工作小组致力于电动汽车电驱动技术的研发。从Editha 1到Editha 3,团队逐步将直流电机替换为永磁同步电机,并最终采用轮毂电机,以实现更高的空间利用率和更智能的车辆动力学控制。然而,轮毂电机的引入也带来了簧下质量增加和声音辐射增强等新问题,亟需对其声学特性进行深入评估和优化。
3. 光学振动测量技术原理
光学振动测量技术是一种基于激光多普勒效应的非接触式测量方法,能够精确测量物体表面的振动速度和位移。本研究一维扫描式激光多普勒测振仪,通过激光束照射到被测物体表面,并接收反射回来的光信号,利用多普勒频移原理计算物体表面的振动速度。
测量原理公式:
其中,v为振动速度,λ为激光波长,Δf为多普勒频移,θ为激光束与被测物体表面的夹角。
4. 实验方法与装置
4.1 实验装置搭建
实验采用自由-自由安装方式,将轮毂电机悬吊在铝型材框架上,以避免外部激励与被测结构因耦合产生的不确定的边界条件。使用力锤激励保证自由边界条件不变,并将力锤的头部安装在电动激振器上,以实现可重复的激励。
4.2 测量网格与反旋器
为了全面测量轮毂电机表面的振动情况,设定了密集的测量网格。由于轮毂电机转子旋转,传统加速度计无法测量其局部面外振动。因此,在测振仪前安装了一个可旋转的玻璃棱镜(反旋器),使测振仪能够按照预设的测量网格对旋转表面进行测量。
4.3 数据采集与处理
实验过程中,电动闸用于施加不同的负载,以实现不同的稳态工作点。使用增量编码器确保反旋器玻璃棱镜的角速度与被测物的角速度保持完全同步。采集的数据通过专业的软件进行处理,得到振动幅值、频率等关键参数。
5. 实验结果与分析
5.1 振动幅值谱图
图4显示了不同负载和速度变化情况下,测量网格各点的平均振动幅值的频响函数。结果表明,高负载和高速度均会导致更明显的声学特性,电机典型的声频组成清晰可见,尤其在3.7 ~ 4kHz的频率范围具有很高的幅值。
5.2 振动模态分析
图5显示了稳态怠速时的典型结果及平均频谱图,以及最为明显的振动模态。系统存在对称和非对称两种振动模式,非对称模态是非对称电激励或非对称边界条件的明确标志。图6则显示了在同等速度和特定扭矩下的工作模态,与怠速时相比,电激励力明显较高,电机运行时的非对称振动模式可能是由空间上不均匀的电激励所引起的。
6. 讨论与展望
本研究通过光学振动测量技术,成功获取了轮毂电机在运行状态下的振动响应数据,为优化其声学特性提供了重要依据。然而,轮毂电机的声学特性受到多种因素的影响,如电机设计、材料选择、边界条件等。因此,未来的研究需要综合考虑这些因素,采用更先进的测量技术和仿真方法,对轮毂电机的声学特性进行更深入的研究和优化。
此外,随着电动汽车市场的不断发展,对轮毂电机的性能要求也将不断提高。未来的研究应关注新型材料、新型电机结构以及智能控制算法在轮毂电机声学特性优化中的应用,以实现电动汽车性能、轻量化设计和声学之间的最佳平衡。
7. 结论
本文介绍了光学振动测量技术在轮毂电机声学特性优化中的应用,详细阐述了测量原理、实验方法、数据处理及结果分析。实验结果表明,光学振动测量技术能够有效参数化轮毂电机的声振特性,为解决噪音问题提供科学依据。未来的研究将在此基础上,进一步探索轮毂电机声学特性的优化方法和技术,推动电动汽车技术的不断进步和发展。